Aromātai
\frac{128817940717701551}{750000000000000000}\approx 0.171757254
Tauwehe
\frac{27697 \cdot 4650970889183}{3 \cdot 2 ^ {16} \cdot 5 ^ {18}} = 0.17175725429026872
Tohaina
Kua tāruatia ki te papatopenga
0.005090587623602068 + | \frac{1}{3} + \frac{1}{2} - 1 |
Evaluate trigonometric functions in the problem
0.005090587623602068+|\frac{2}{6}+\frac{3}{6}-1|
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
0.005090587623602068+|\frac{2+3}{6}-1|
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
0.005090587623602068+|\frac{5}{6}-1|
Tāpirihia te 2 ki te 3, ka 5.
0.005090587623602068+|\frac{5}{6}-\frac{6}{6}|
Me tahuri te 1 ki te hautau \frac{6}{6}.
0.005090587623602068+|\frac{5-6}{6}|
Tā te mea he rite te tauraro o \frac{5}{6} me \frac{6}{6}, me tango rāua mā te tango i ō raua taurunga.
0.005090587623602068+|-\frac{1}{6}|
Tangohia te 6 i te 5, ka -1.
0.005090587623602068+\frac{1}{6}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{6} ko \frac{1}{6}.
\frac{1272646905900517}{250000000000000000}+\frac{1}{6}
Me tahuri ki tau ā-ira 0.005090587623602068 ki te hautau \frac{1272646905900517}{10000000000}. Whakahekea te hautanga \frac{1272646905900517}{10000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 1.
\frac{3817940717701551}{750000000000000000}+\frac{125000000000000000}{750000000000000000}
Ko te maha noa iti rawa atu o 250000000000000000 me 6 ko 750000000000000000. Me tahuri \frac{1272646905900517}{250000000000000000} me \frac{1}{6} ki te hautau me te tautūnga 750000000000000000.
\frac{3817940717701551+125000000000000000}{750000000000000000}
Tā te mea he rite te tauraro o \frac{3817940717701551}{750000000000000000} me \frac{125000000000000000}{750000000000000000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{128817940717701551}{750000000000000000}
Tāpirihia te 3817940717701551 ki te 125000000000000000, ka 128817940717701551.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}