Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki α
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}\alpha }(\frac{\sin(\alpha )}{\cos(\alpha )})
Whakamahia te tautuhinga o te pātapa.
\frac{\cos(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\sin(\alpha ))-\sin(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))}{\left(\cos(\alpha )\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\cos(\alpha )\cos(\alpha )-\sin(\alpha )\left(-\sin(\alpha )\right)}{\left(\cos(\alpha )\right)^{2}}
Ko te pārōnaki o sin(\alpha ) ko cos(\alpha ), me te pārōnaki o cos(\alpha ) ko −sin(\alpha ).
\frac{\left(\cos(\alpha )\right)^{2}+\left(\sin(\alpha )\right)^{2}}{\left(\cos(\alpha )\right)^{2}}
Whakarūnātia.
\frac{1}{\left(\cos(\alpha )\right)^{2}}
Whakamahia te Tuakiri Pythagorean.
\left(\sec(\alpha )\right)^{2}
Whakamahia te tautuhinga o te whenu taupoki.