\sum \times 3 \times \frac { 7 } { 4 } \times \frac { 119 } { 25 }
Aromātai
\frac{2499Σ}{100}
Kimi Pārōnaki e ai ki Σ
\frac{2499}{100} = 24\frac{99}{100} = 24.99
Tohaina
Kua tāruatia ki te papatopenga
Σ\times \frac{3\times 7}{4}\times \frac{119}{25}
Tuhia te 3\times \frac{7}{4} hei hautanga kotahi.
Σ\times \frac{21}{4}\times \frac{119}{25}
Whakareatia te 3 ki te 7, ka 21.
Σ\times \frac{21\times 119}{4\times 25}
Me whakarea te \frac{21}{4} ki te \frac{119}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
Σ\times \frac{2499}{100}
Mahia ngā whakarea i roto i te hautanga \frac{21\times 119}{4\times 25}.
\frac{\mathrm{d}}{\mathrm{d}Σ}(Σ\times \frac{3\times 7}{4}\times \frac{119}{25})
Tuhia te 3\times \frac{7}{4} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}Σ}(Σ\times \frac{21}{4}\times \frac{119}{25})
Whakareatia te 3 ki te 7, ka 21.
\frac{\mathrm{d}}{\mathrm{d}Σ}(Σ\times \frac{21\times 119}{4\times 25})
Me whakarea te \frac{21}{4} ki te \frac{119}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}Σ}(Σ\times \frac{2499}{100})
Mahia ngā whakarea i roto i te hautanga \frac{21\times 119}{4\times 25}.
\frac{2499}{100}Σ^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{2499}{100}Σ^{0}
Tango 1 mai i 1.
\frac{2499}{100}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{2499}{100}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}