Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{y}=3-\sqrt{y+2}
Me tango \sqrt{y+2} mai i ngā taha e rua o te whārite.
\left(\sqrt{y}\right)^{2}=\left(3-\sqrt{y+2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
y=\left(3-\sqrt{y+2}\right)^{2}
Tātaihia te \sqrt{y} mā te pū o 2, kia riro ko y.
y=9-6\sqrt{y+2}+\left(\sqrt{y+2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-\sqrt{y+2}\right)^{2}.
y=9-6\sqrt{y+2}+y+2
Tātaihia te \sqrt{y+2} mā te pū o 2, kia riro ko y+2.
y=11-6\sqrt{y+2}+y
Tāpirihia te 9 ki te 2, ka 11.
y+6\sqrt{y+2}=11+y
Me tāpiri te 6\sqrt{y+2} ki ngā taha e rua.
y+6\sqrt{y+2}-y=11
Tangohia te y mai i ngā taha e rua.
6\sqrt{y+2}=11
Pahekotia te y me -y, ka 0.
\sqrt{y+2}=\frac{11}{6}
Whakawehea ngā taha e rua ki te 6.
y+2=\frac{121}{36}
Pūruatia ngā taha e rua o te whārite.
y+2-2=\frac{121}{36}-2
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{121}{36}-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
y=\frac{49}{36}
Tango 2 mai i \frac{121}{36}.
\sqrt{\frac{49}{36}}+\sqrt{\frac{49}{36}+2}=3
Whakakapia te \frac{49}{36} mō te y i te whārite \sqrt{y}+\sqrt{y+2}=3.
3=3
Whakarūnātia. Ko te uara y=\frac{49}{36} kua ngata te whārite.
y=\frac{49}{36}
Ko te whārite \sqrt{y}=-\sqrt{y+2}+3 he rongoā ahurei.