Whakaoti mō x (complex solution)
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x-5}\right)^{2}=\left(2\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-5=\left(2\sqrt{x}\right)^{2}
Tātaihia te \sqrt{x-5} mā te pū o 2, kia riro ko x-5.
x-5=2^{2}\left(\sqrt{x}\right)^{2}
Whakarohaina te \left(2\sqrt{x}\right)^{2}.
x-5=4\left(\sqrt{x}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x-5=4x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-5-4x=0
Tangohia te 4x mai i ngā taha e rua.
-3x-5=0
Pahekotia te x me -4x, ka -3x.
-3x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{5}{-3}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{5}{3}
Ka taea te hautanga \frac{5}{-3} te tuhi anō ko -\frac{5}{3} mā te tango i te tohu tōraro.
\sqrt{-\frac{5}{3}-5}=2\sqrt{-\frac{5}{3}}
Whakakapia te -\frac{5}{3} mō te x i te whārite \sqrt{x-5}=2\sqrt{x}.
\frac{2}{3}i\times 15^{\frac{1}{2}}=\frac{2}{3}i\times 15^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\frac{5}{3} kua ngata te whārite.
x=-\frac{5}{3}
Ko te whārite \sqrt{x-5}=2\sqrt{x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}