Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x-5}\right)^{2}=\left(2\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-5=\left(2\sqrt{x}\right)^{2}
Tātaihia te \sqrt{x-5} mā te pū o 2, kia riro ko x-5.
x-5=2^{2}\left(\sqrt{x}\right)^{2}
Whakarohaina te \left(2\sqrt{x}\right)^{2}.
x-5=4\left(\sqrt{x}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x-5=4x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-5-4x=0
Tangohia te 4x mai i ngā taha e rua.
-3x-5=0
Pahekotia te x me -4x, ka -3x.
-3x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{5}{-3}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{5}{3}
Ka taea te hautanga \frac{5}{-3} te tuhi anō ko -\frac{5}{3} mā te tango i te tohu tōraro.
\sqrt{-\frac{5}{3}-5}=2\sqrt{-\frac{5}{3}}
Whakakapia te -\frac{5}{3} mō te x i te whārite \sqrt{x-5}=2\sqrt{x}.
\frac{2}{3}i\times 15^{\frac{1}{2}}=\frac{2}{3}i\times 15^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\frac{5}{3} kua ngata te whārite.
x=-\frac{5}{3}
Ko te whārite \sqrt{x-5}=2\sqrt{x} he rongoā ahurei.