Whakaoti mō x
x=13
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x-4}=-\left(-\sqrt{4x-27}+\sqrt{x-9}\right)
Me tango -\sqrt{4x-27}+\sqrt{x-9} mai i ngā taha e rua o te whārite.
\sqrt{x-4}=-\left(-\sqrt{4x-27}\right)-\sqrt{x-9}
Hei kimi i te tauaro o -\sqrt{4x-27}+\sqrt{x-9}, kimihia te tauaro o ia taurangi.
\sqrt{x-4}=\sqrt{4x-27}-\sqrt{x-9}
Ko te tauaro o -\sqrt{4x-27} ko \sqrt{4x-27}.
\left(\sqrt{x-4}\right)^{2}=\left(\sqrt{4x-27}-\sqrt{x-9}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-4=\left(\sqrt{4x-27}-\sqrt{x-9}\right)^{2}
Tātaihia te \sqrt{x-4} mā te pū o 2, kia riro ko x-4.
x-4=\left(\sqrt{4x-27}\right)^{2}-2\sqrt{4x-27}\sqrt{x-9}+\left(\sqrt{x-9}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{4x-27}-\sqrt{x-9}\right)^{2}.
x-4=4x-27-2\sqrt{4x-27}\sqrt{x-9}+\left(\sqrt{x-9}\right)^{2}
Tātaihia te \sqrt{4x-27} mā te pū o 2, kia riro ko 4x-27.
x-4=4x-27-2\sqrt{4x-27}\sqrt{x-9}+x-9
Tātaihia te \sqrt{x-9} mā te pū o 2, kia riro ko x-9.
x-4=5x-27-2\sqrt{4x-27}\sqrt{x-9}-9
Pahekotia te 4x me x, ka 5x.
x-4=5x-36-2\sqrt{4x-27}\sqrt{x-9}
Tangohia te 9 i te -27, ka -36.
x-4-\left(5x-36\right)=-2\sqrt{4x-27}\sqrt{x-9}
Me tango 5x-36 mai i ngā taha e rua o te whārite.
x-4-5x+36=-2\sqrt{4x-27}\sqrt{x-9}
Hei kimi i te tauaro o 5x-36, kimihia te tauaro o ia taurangi.
-4x-4+36=-2\sqrt{4x-27}\sqrt{x-9}
Pahekotia te x me -5x, ka -4x.
-4x+32=-2\sqrt{4x-27}\sqrt{x-9}
Tāpirihia te -4 ki te 36, ka 32.
\left(-4x+32\right)^{2}=\left(-2\sqrt{4x-27}\sqrt{x-9}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
16x^{2}-256x+1024=\left(-2\sqrt{4x-27}\sqrt{x-9}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-4x+32\right)^{2}.
16x^{2}-256x+1024=\left(-2\right)^{2}\left(\sqrt{4x-27}\right)^{2}\left(\sqrt{x-9}\right)^{2}
Whakarohaina te \left(-2\sqrt{4x-27}\sqrt{x-9}\right)^{2}.
16x^{2}-256x+1024=4\left(\sqrt{4x-27}\right)^{2}\left(\sqrt{x-9}\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
16x^{2}-256x+1024=4\left(4x-27\right)\left(\sqrt{x-9}\right)^{2}
Tātaihia te \sqrt{4x-27} mā te pū o 2, kia riro ko 4x-27.
16x^{2}-256x+1024=4\left(4x-27\right)\left(x-9\right)
Tātaihia te \sqrt{x-9} mā te pū o 2, kia riro ko x-9.
16x^{2}-256x+1024=\left(16x-108\right)\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4x-27.
16x^{2}-256x+1024=16x^{2}-144x-108x+972
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 16x-108 ki ia tau o x-9.
16x^{2}-256x+1024=16x^{2}-252x+972
Pahekotia te -144x me -108x, ka -252x.
16x^{2}-256x+1024-16x^{2}=-252x+972
Tangohia te 16x^{2} mai i ngā taha e rua.
-256x+1024=-252x+972
Pahekotia te 16x^{2} me -16x^{2}, ka 0.
-256x+1024+252x=972
Me tāpiri te 252x ki ngā taha e rua.
-4x+1024=972
Pahekotia te -256x me 252x, ka -4x.
-4x=972-1024
Tangohia te 1024 mai i ngā taha e rua.
-4x=-52
Tangohia te 1024 i te 972, ka -52.
x=\frac{-52}{-4}
Whakawehea ngā taha e rua ki te -4.
x=13
Whakawehea te -52 ki te -4, kia riro ko 13.
\sqrt{13-4}-\sqrt{4\times 13-27}+\sqrt{13-9}=0
Whakakapia te 13 mō te x i te whārite \sqrt{x-4}-\sqrt{4x-27}+\sqrt{x-9}=0.
0=0
Whakarūnātia. Ko te uara x=13 kua ngata te whārite.
x=13
Ko te whārite \sqrt{x-4}=\sqrt{4x-27}-\sqrt{x-9} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}