Whakaoti mō x
x=\frac{\sqrt{5}-7}{2}\approx -2.381966011
Graph
Pātaitai
Algebra
\sqrt{ x+5 } = x+4
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+5}\right)^{2}=\left(x+4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+5=\left(x+4\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
x+5=x^{2}+8x+16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
x+5-x^{2}=8x+16
Tangohia te x^{2} mai i ngā taha e rua.
x+5-x^{2}-8x=16
Tangohia te 8x mai i ngā taha e rua.
-7x+5-x^{2}=16
Pahekotia te x me -8x, ka -7x.
-7x+5-x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
-7x-11-x^{2}=0
Tangohia te 16 i te 5, ka -11.
-x^{2}-7x-11=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -7 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49+4\left(-11\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-7\right)±\sqrt{49-44}}{2\left(-1\right)}
Whakareatia 4 ki te -11.
x=\frac{-\left(-7\right)±\sqrt{5}}{2\left(-1\right)}
Tāpiri 49 ki te -44.
x=\frac{7±\sqrt{5}}{2\left(-1\right)}
Ko te tauaro o -7 ko 7.
x=\frac{7±\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{5}+7}{-2}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri 7 ki te \sqrt{5}.
x=\frac{-\sqrt{5}-7}{2}
Whakawehe 7+\sqrt{5} ki te -2.
x=\frac{7-\sqrt{5}}{-2}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{5}}{-2} ina he tango te ±. Tango \sqrt{5} mai i 7.
x=\frac{\sqrt{5}-7}{2}
Whakawehe 7-\sqrt{5} ki te -2.
x=\frac{-\sqrt{5}-7}{2} x=\frac{\sqrt{5}-7}{2}
Kua oti te whārite te whakatau.
\sqrt{\frac{-\sqrt{5}-7}{2}+5}=\frac{-\sqrt{5}-7}{2}+4
Whakakapia te \frac{-\sqrt{5}-7}{2} mō te x i te whārite \sqrt{x+5}=x+4.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=-\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{5}-7}{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{\frac{\sqrt{5}-7}{2}+5}=\frac{\sqrt{5}-7}{2}+4
Whakakapia te \frac{\sqrt{5}-7}{2} mō te x i te whārite \sqrt{x+5}=x+4.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
Whakarūnātia. Ko te uara x=\frac{\sqrt{5}-7}{2} kua ngata te whārite.
x=\frac{\sqrt{5}-7}{2}
Ko te whārite \sqrt{x+5}=x+4 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}