Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x+2}=2+\sqrt{x-2}
Me tango -\sqrt{x-2} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+2}\right)^{2}=\left(2+\sqrt{x-2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+2=\left(2+\sqrt{x-2}\right)^{2}
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+2=4+4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{x-2}\right)^{2}.
x+2=4+4\sqrt{x-2}+x-2
Tātaihia te \sqrt{x-2} mā te pū o 2, kia riro ko x-2.
x+2=2+4\sqrt{x-2}+x
Tangohia te 2 i te 4, ka 2.
x+2-4\sqrt{x-2}=2+x
Tangohia te 4\sqrt{x-2} mai i ngā taha e rua.
x+2-4\sqrt{x-2}-x=2
Tangohia te x mai i ngā taha e rua.
2-4\sqrt{x-2}=2
Pahekotia te x me -x, ka 0.
-4\sqrt{x-2}=2-2
Tangohia te 2 mai i ngā taha e rua.
-4\sqrt{x-2}=0
Tangohia te 2 i te 2, ka 0.
\sqrt{x-2}=0
Whakawehea ngā taha e rua ki te -4. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x-2=0
Pūruatia ngā taha e rua o te whārite.
x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
x=2
Tango -2 mai i 0.
\sqrt{2+2}-\sqrt{2-2}=2
Whakakapia te 2 mō te x i te whārite \sqrt{x+2}-\sqrt{x-2}=2.
2=2
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
x=2
Ko te whārite \sqrt{x+2}=\sqrt{x-2}+2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}