Whakaoti mō x
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x+2}=10-x
Me tango x mai i ngā taha e rua o te whārite.
\left(\sqrt{x+2}\right)^{2}=\left(10-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+2=\left(10-x\right)^{2}
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+2=100-20x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(10-x\right)^{2}.
x+2-100=-20x+x^{2}
Tangohia te 100 mai i ngā taha e rua.
x-98=-20x+x^{2}
Tangohia te 100 i te 2, ka -98.
x-98+20x=x^{2}
Me tāpiri te 20x ki ngā taha e rua.
21x-98=x^{2}
Pahekotia te x me 20x, ka 21x.
21x-98-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+21x-98=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=21 ab=-\left(-98\right)=98
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-98. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,98 2,49 7,14
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 98.
1+98=99 2+49=51 7+14=21
Tātaihia te tapeke mō ia takirua.
a=14 b=7
Ko te otinga te takirua ka hoatu i te tapeke 21.
\left(-x^{2}+14x\right)+\left(7x-98\right)
Tuhia anō te -x^{2}+21x-98 hei \left(-x^{2}+14x\right)+\left(7x-98\right).
-x\left(x-14\right)+7\left(x-14\right)
Tauwehea te -x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-14\right)\left(-x+7\right)
Whakatauwehea atu te kīanga pātahi x-14 mā te whakamahi i te āhuatanga tātai tohatoha.
x=14 x=7
Hei kimi otinga whārite, me whakaoti te x-14=0 me te -x+7=0.
\sqrt{14+2}+14=10
Whakakapia te 14 mō te x i te whārite \sqrt{x+2}+x=10.
18=10
Whakarūnātia. Ko te uara x=14 kāore e ngata ana ki te whārite.
\sqrt{7+2}+7=10
Whakakapia te 7 mō te x i te whārite \sqrt{x+2}+x=10.
10=10
Whakarūnātia. Ko te uara x=7 kua ngata te whārite.
x=7
Ko te whārite \sqrt{x+2}=10-x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}