Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x}\right)^{2}=\left(5x+3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(5x+3\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=25x^{2}+30x+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+3\right)^{2}.
x-25x^{2}=30x+9
Tangohia te 25x^{2} mai i ngā taha e rua.
x-25x^{2}-30x=9
Tangohia te 30x mai i ngā taha e rua.
-29x-25x^{2}=9
Pahekotia te x me -30x, ka -29x.
-29x-25x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
-25x^{2}-29x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\left(-25\right)\left(-9\right)}}{2\left(-25\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -25 mō a, -29 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\left(-25\right)\left(-9\right)}}{2\left(-25\right)}
Pūrua -29.
x=\frac{-\left(-29\right)±\sqrt{841+100\left(-9\right)}}{2\left(-25\right)}
Whakareatia -4 ki te -25.
x=\frac{-\left(-29\right)±\sqrt{841-900}}{2\left(-25\right)}
Whakareatia 100 ki te -9.
x=\frac{-\left(-29\right)±\sqrt{-59}}{2\left(-25\right)}
Tāpiri 841 ki te -900.
x=\frac{-\left(-29\right)±\sqrt{59}i}{2\left(-25\right)}
Tuhia te pūtakerua o te -59.
x=\frac{29±\sqrt{59}i}{2\left(-25\right)}
Ko te tauaro o -29 ko 29.
x=\frac{29±\sqrt{59}i}{-50}
Whakareatia 2 ki te -25.
x=\frac{29+\sqrt{59}i}{-50}
Nā, me whakaoti te whārite x=\frac{29±\sqrt{59}i}{-50} ina he tāpiri te ±. Tāpiri 29 ki te i\sqrt{59}.
x=\frac{-\sqrt{59}i-29}{50}
Whakawehe 29+i\sqrt{59} ki te -50.
x=\frac{-\sqrt{59}i+29}{-50}
Nā, me whakaoti te whārite x=\frac{29±\sqrt{59}i}{-50} ina he tango te ±. Tango i\sqrt{59} mai i 29.
x=\frac{-29+\sqrt{59}i}{50}
Whakawehe 29-i\sqrt{59} ki te -50.
x=\frac{-\sqrt{59}i-29}{50} x=\frac{-29+\sqrt{59}i}{50}
Kua oti te whārite te whakatau.
\sqrt{\frac{-\sqrt{59}i-29}{50}}=5\times \frac{-\sqrt{59}i-29}{50}+3
Whakakapia te \frac{-\sqrt{59}i-29}{50} mō te x i te whārite \sqrt{x}=5x+3.
-\left(\frac{1}{10}-\frac{1}{10}i\times 59^{\frac{1}{2}}\right)=-\frac{1}{10}i\times 59^{\frac{1}{2}}+\frac{1}{10}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{59}i-29}{50} kāore e ngata ana ki te whārite.
\sqrt{\frac{-29+\sqrt{59}i}{50}}=5\times \frac{-29+\sqrt{59}i}{50}+3
Whakakapia te \frac{-29+\sqrt{59}i}{50} mō te x i te whārite \sqrt{x}=5x+3.
\frac{1}{10}+\frac{1}{10}i\times 59^{\frac{1}{2}}=\frac{1}{10}+\frac{1}{10}i\times 59^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{-29+\sqrt{59}i}{50} kua ngata te whārite.
x=\frac{-29+\sqrt{59}i}{50}
Ko te whārite \sqrt{x}=5x+3 he rongoā ahurei.