Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{x}=7-6-x
Me tango x mai i ngā taha e rua o te whārite.
\sqrt{x}=1-x
Tangohia te 6 i te 7, ka 1.
\left(\sqrt{x}\right)^{2}=\left(1-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(1-x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=1-2x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-x\right)^{2}.
x-1=-2x+x^{2}
Tangohia te 1 mai i ngā taha e rua.
x-1+2x=x^{2}
Me tāpiri te 2x ki ngā taha e rua.
3x-1=x^{2}
Pahekotia te x me 2x, ka 3x.
3x-1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+3x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-3±\sqrt{9-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
x=\frac{-3±\sqrt{5}}{2\left(-1\right)}
Tāpiri 9 ki te -4.
x=\frac{-3±\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{5}-3}{-2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Whakawehe -3+\sqrt{5} ki te -2.
x=\frac{-\sqrt{5}-3}{-2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{5}}{-2} ina he tango te ±. Tango \sqrt{5} mai i -3.
x=\frac{\sqrt{5}+3}{2}
Whakawehe -3-\sqrt{5} ki te -2.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
Kua oti te whārite te whakatau.
\sqrt{\frac{3-\sqrt{5}}{2}}+\frac{3-\sqrt{5}}{2}=7-6
Whakakapia te \frac{3-\sqrt{5}}{2} mō te x i te whārite \sqrt{x}+x=7-6.
1=1
Whakarūnātia. Ko te uara x=\frac{3-\sqrt{5}}{2} kua ngata te whārite.
\sqrt{\frac{\sqrt{5}+3}{2}}+\frac{\sqrt{5}+3}{2}=7-6
Whakakapia te \frac{\sqrt{5}+3}{2} mō te x i te whārite \sqrt{x}+x=7-6.
2+5^{\frac{1}{2}}=1
Whakarūnātia. Ko te uara x=\frac{\sqrt{5}+3}{2} kāore e ngata ana ki te whārite.
x=\frac{3-\sqrt{5}}{2}
Ko te whārite \sqrt{x}=1-x he rongoā ahurei.