Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{x}=4-\sqrt{x}
Me tango \sqrt{x} mai i ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}=\left(4-\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(4-\sqrt{x}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{x}\right)^{2}.
x=16-8\sqrt{x}+x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x+8\sqrt{x}=16+x
Me tāpiri te 8\sqrt{x} ki ngā taha e rua.
x+8\sqrt{x}-x=16
Tangohia te x mai i ngā taha e rua.
8\sqrt{x}=16
Pahekotia te x me -x, ka 0.
\sqrt{x}=\frac{16}{8}
Whakawehea ngā taha e rua ki te 8.
\sqrt{x}=2
Whakawehea te 16 ki te 8, kia riro ko 2.
x=4
Pūruatia ngā taha e rua o te whārite.
\sqrt{4}+\sqrt{4}=4
Whakakapia te 4 mō te x i te whārite \sqrt{x}+\sqrt{x}=4.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{x}=-\sqrt{x}+4 he rongoā ahurei.