Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x}\right)^{2}=\left(\frac{x}{9}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(\frac{x}{9}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=\frac{x^{2}}{9^{2}}
Kia whakarewa i te \frac{x}{9} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x=\frac{x^{2}}{81}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
x-\frac{x^{2}}{81}=0
Tangohia te \frac{x^{2}}{81} mai i ngā taha e rua.
81x-x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 81.
-x^{2}+81x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-81±\sqrt{81^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 81 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-81±81}{2\left(-1\right)}
Tuhia te pūtakerua o te 81^{2}.
x=\frac{-81±81}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-81±81}{-2} ina he tāpiri te ±. Tāpiri -81 ki te 81.
x=0
Whakawehe 0 ki te -2.
x=-\frac{162}{-2}
Nā, me whakaoti te whārite x=\frac{-81±81}{-2} ina he tango te ±. Tango 81 mai i -81.
x=81
Whakawehe -162 ki te -2.
x=0 x=81
Kua oti te whārite te whakatau.
\sqrt{0}=\frac{0}{9}
Whakakapia te 0 mō te x i te whārite \sqrt{x}=\frac{x}{9}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{81}=\frac{81}{9}
Whakakapia te 81 mō te x i te whārite \sqrt{x}=\frac{x}{9}.
9=9
Whakarūnātia. Ko te uara x=81 kua ngata te whārite.
x=0 x=81
Rārangihia ngā rongoā katoa o \sqrt{x}=\frac{x}{9}.