Whakaoti mō x
x=0
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x}\right)^{2}=\left(\frac{x}{3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(\frac{x}{3}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=\frac{x^{2}}{3^{2}}
Kia whakarewa i te \frac{x}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x=\frac{x^{2}}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
x-\frac{x^{2}}{9}=0
Tangohia te \frac{x^{2}}{9} mai i ngā taha e rua.
9x-x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 9.
-x^{2}+9x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 9 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±9}{2\left(-1\right)}
Tuhia te pūtakerua o te 9^{2}.
x=\frac{-9±9}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-9±9}{-2} ina he tāpiri te ±. Tāpiri -9 ki te 9.
x=0
Whakawehe 0 ki te -2.
x=-\frac{18}{-2}
Nā, me whakaoti te whārite x=\frac{-9±9}{-2} ina he tango te ±. Tango 9 mai i -9.
x=9
Whakawehe -18 ki te -2.
x=0 x=9
Kua oti te whārite te whakatau.
\sqrt{0}=\frac{0}{3}
Whakakapia te 0 mō te x i te whārite \sqrt{x}=\frac{x}{3}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{9}=\frac{9}{3}
Whakakapia te 9 mō te x i te whārite \sqrt{x}=\frac{x}{3}.
3=3
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
x=0 x=9
Rārangihia ngā rongoā katoa o \sqrt{x}=\frac{x}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}