Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x}\right)^{2}=\left(\frac{x}{3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(\frac{x}{3}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=\frac{x^{2}}{3^{2}}
Kia whakarewa i te \frac{x}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x=\frac{x^{2}}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
x-\frac{x^{2}}{9}=0
Tangohia te \frac{x^{2}}{9} mai i ngā taha e rua.
9x-x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 9.
-x^{2}+9x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 9 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±9}{2\left(-1\right)}
Tuhia te pūtakerua o te 9^{2}.
x=\frac{-9±9}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-9±9}{-2} ina he tāpiri te ±. Tāpiri -9 ki te 9.
x=0
Whakawehe 0 ki te -2.
x=-\frac{18}{-2}
Nā, me whakaoti te whārite x=\frac{-9±9}{-2} ina he tango te ±. Tango 9 mai i -9.
x=9
Whakawehe -18 ki te -2.
x=0 x=9
Kua oti te whārite te whakatau.
\sqrt{0}=\frac{0}{3}
Whakakapia te 0 mō te x i te whārite \sqrt{x}=\frac{x}{3}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{9}=\frac{9}{3}
Whakakapia te 9 mō te x i te whārite \sqrt{x}=\frac{x}{3}.
3=3
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
x=0 x=9
Rārangihia ngā rongoā katoa o \sqrt{x}=\frac{x}{3}.