Aromātai
5\sqrt{5}-15\approx -3.819660113
Tohaina
Kua tāruatia ki te papatopenga
4\sqrt{5}+5\sqrt{\frac{1}{5}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{5}+5\times \frac{\sqrt{1}}{\sqrt{5}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
4\sqrt{5}+5\times \frac{1}{\sqrt{5}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tātaitia te pūtakerua o 1 kia tae ki 1.
4\sqrt{5}+5\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
4\sqrt{5}+5\times \frac{\sqrt{5}}{5}-3\sqrt{\frac{1}{5}}\sqrt{125}
Ko te pūrua o \sqrt{5} ko 5.
4\sqrt{5}+\sqrt{5}-3\sqrt{\frac{1}{5}}\sqrt{125}
Me whakakore te 5 me te 5.
5\sqrt{5}-3\sqrt{\frac{1}{5}}\sqrt{125}
Pahekotia te 4\sqrt{5} me \sqrt{5}, ka 5\sqrt{5}.
5\sqrt{5}-3\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{125}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
5\sqrt{5}-3\times \frac{1}{\sqrt{5}}\sqrt{125}
Tātaitia te pūtakerua o 1 kia tae ki 1.
5\sqrt{5}-3\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{125}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
5\sqrt{5}-3\times \frac{\sqrt{5}}{5}\sqrt{125}
Ko te pūrua o \sqrt{5} ko 5.
5\sqrt{5}-3\times \frac{\sqrt{5}}{5}\times 5\sqrt{5}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
5\sqrt{5}-15\times \frac{\sqrt{5}}{5}\sqrt{5}
Whakareatia te 3 ki te 5, ka 15.
5\sqrt{5}-3\sqrt{5}\sqrt{5}
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 15 me te 5.
5\sqrt{5}-3\times 5
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
5\sqrt{5}-15
Whakareatia te 3 ki te 5, ka 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}