Aromātai
\frac{\sqrt{5}\left(\sqrt{10}+4\right)}{2}\approx 8.007669861
Tauwehe
\frac{\sqrt{5} {(\sqrt{2} \sqrt{5} + 4)}}{2} = 8.007669860932317
Pātaitai
Arithmetic
\sqrt{ 80 } +5 \sqrt{ \frac{ 1 }{ 2 } } -3 \sqrt{ 5 } + \frac{ 1 }{ 5 } \sqrt{ 125 }
Tohaina
Kua tāruatia ki te papatopenga
4\sqrt{5}+5\sqrt{\frac{1}{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{5}+5\times \frac{\sqrt{1}}{\sqrt{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
4\sqrt{5}+5\times \frac{1}{\sqrt{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Tātaitia te pūtakerua o 1 kia tae ki 1.
4\sqrt{5}+5\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
4\sqrt{5}+5\times \frac{\sqrt{2}}{2}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Ko te pūrua o \sqrt{2} ko 2.
4\sqrt{5}+\frac{5\sqrt{2}}{2}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Tuhia te 5\times \frac{\sqrt{2}}{2} hei hautanga kotahi.
\sqrt{5}+\frac{5\sqrt{2}}{2}+\frac{1}{5}\sqrt{125}
Pahekotia te 4\sqrt{5} me -3\sqrt{5}, ka \sqrt{5}.
\sqrt{5}+\frac{5\sqrt{2}}{2}+\frac{1}{5}\times 5\sqrt{5}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\sqrt{5}+\frac{5\sqrt{2}}{2}+\sqrt{5}
Me whakakore te 5 me te 5.
2\sqrt{5}+\frac{5\sqrt{2}}{2}
Pahekotia te \sqrt{5} me \sqrt{5}, ka 2\sqrt{5}.
\frac{2\times 2\sqrt{5}}{2}+\frac{5\sqrt{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{5} ki te \frac{2}{2}.
\frac{2\times 2\sqrt{5}+5\sqrt{2}}{2}
Tā te mea he rite te tauraro o \frac{2\times 2\sqrt{5}}{2} me \frac{5\sqrt{2}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4\sqrt{5}+5\sqrt{2}}{2}
Mahia ngā whakarea i roto o 2\times 2\sqrt{5}+5\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}