Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\sqrt{5}+5\sqrt{\frac{1}{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{5}+5\times \frac{\sqrt{1}}{\sqrt{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
4\sqrt{5}+5\times \frac{1}{\sqrt{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tātaitia te pūtakerua o 1 kia tae ki 1.
4\sqrt{5}+5\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
4\sqrt{5}+5\times \frac{\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Ko te pūrua o \sqrt{2} ko 2.
4\sqrt{5}+\frac{5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tuhia te 5\times \frac{\sqrt{2}}{2} hei hautanga kotahi.
\frac{2\times 4\sqrt{5}}{2}+\frac{5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4\sqrt{5} ki te \frac{2}{2}.
\frac{2\times 4\sqrt{5}+5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Tā te mea he rite te tauraro o \frac{2\times 4\sqrt{5}}{2} me \frac{5\sqrt{2}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Mahia ngā whakarea i roto o 2\times 4\sqrt{5}+5\sqrt{2}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{125}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{1}{\sqrt{5}}\sqrt{125}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{125}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{5}}{5}\sqrt{125}
Ko te pūrua o \sqrt{5} ko 5.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{5}}{5}\times 5\sqrt{5}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-15\times \frac{\sqrt{5}}{5}\sqrt{5}
Whakareatia te 3 ki te 5, ka 15.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\sqrt{5}\sqrt{5}
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 15 me te 5.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-\frac{2\times 3\sqrt{5}\sqrt{5}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3\sqrt{5}\sqrt{5} ki te \frac{2}{2}.
\frac{8\sqrt{5}+5\sqrt{2}-2\times 3\sqrt{5}\sqrt{5}}{2}
Tā te mea he rite te tauraro o \frac{8\sqrt{5}+5\sqrt{2}}{2} me \frac{2\times 3\sqrt{5}\sqrt{5}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{8\sqrt{5}+5\sqrt{2}-30}{2}
Mahia ngā whakarea i roto o 8\sqrt{5}+5\sqrt{2}-2\times 3\sqrt{5}\sqrt{5}.