Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{78\times \frac{15}{4}}
Whakahekea te hautanga \frac{45}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{\frac{78\times 15}{4}}
Tuhia te 78\times \frac{15}{4} hei hautanga kotahi.
\sqrt{\frac{1170}{4}}
Whakareatia te 78 ki te 15, ka 1170.
\sqrt{\frac{585}{2}}
Whakahekea te hautanga \frac{1170}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{585}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{585}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{585}}{\sqrt{2}}.
\frac{3\sqrt{65}}{\sqrt{2}}
Tauwehea te 585=3^{2}\times 65. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 65} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{65}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{65}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{65}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3\sqrt{65}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3\sqrt{130}}{2}
Hei whakarea \sqrt{65} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.