\sqrt{ 6 \left( 1+ \frac{ 1 }{ { 2 }^{ 2 } } + \frac{ 1 }{ { 3 }^{ 2 } } + \frac{ 1 }{ { 4 }^{ 2 } } + \frac{ 1 }{ { 5 }^{ 2 } } + \frac{ 1 }{ { 6 }^{ 2 } } + \frac{ 1 }{ { 7 }^{ 2 } } + \frac{ 1 }{ { 8 }^{ 2 } } + \frac{ 1 }{ { 9 }^{ 2 } } + \frac{ 1 }{ { 10 }^{ 2 } } + \frac{ 1 }{ { 11 }^{ 2 } } + \frac{ 1 }{ { 12 }^{ 2 } } + \frac{ 1 }{ { 13 }^{ 2 } } + \frac{ 1 }{ { 14 }^{ 2 } } + \frac{ 1 }{ { 15 }^{ 2 } } + \frac{ 1 }{ { 16 }^{ 2 } } + \frac{ 1 }{ { 17 }^{ 2 } } + \frac{ 1 }{ { 18 }^{ 2 } } + \frac{ 1 }{ { 19 }^{ 2 } } + \frac{ 1 }{ { 20 }^{ 2 } } + \frac{ 1 }{ { 21 }^{ 2 } } \right) }
Aromātai
\frac{\sqrt{10606869044576670}}{33256080}\approx 3.09686695
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{6\left(1+\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\sqrt{6\left(\frac{4}{4}+\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\sqrt{6\left(\frac{4+1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{5}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 4 ki te 1, ka 5.
\sqrt{6\left(\frac{5}{4}+\frac{1}{9}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{6\left(\frac{45}{36}+\frac{4}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 4 me 9 ko 36. Me tahuri \frac{5}{4} me \frac{1}{9} ki te hautau me te tautūnga 36.
\sqrt{6\left(\frac{45+4}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{45}{36} me \frac{4}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{49}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 45 ki te 4, ka 49.
\sqrt{6\left(\frac{49}{36}+\frac{1}{16}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\sqrt{6\left(\frac{196}{144}+\frac{9}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 36 me 16 ko 144. Me tahuri \frac{49}{36} me \frac{1}{16} ki te hautau me te tautūnga 144.
\sqrt{6\left(\frac{196+9}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{196}{144} me \frac{9}{144}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{205}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 196 ki te 9, ka 205.
\sqrt{6\left(\frac{205}{144}+\frac{1}{25}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\sqrt{6\left(\frac{5125}{3600}+\frac{144}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 144 me 25 ko 3600. Me tahuri \frac{205}{144} me \frac{1}{25} ki te hautau me te tautūnga 3600.
\sqrt{6\left(\frac{5125+144}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{5125}{3600} me \frac{144}{3600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{5269}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 5125 ki te 144, ka 5269.
\sqrt{6\left(\frac{5269}{3600}+\frac{1}{36}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{6\left(\frac{5269}{3600}+\frac{100}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 3600 me 36 ko 3600. Me tahuri \frac{5269}{3600} me \frac{1}{36} ki te hautau me te tautūnga 3600.
\sqrt{6\left(\frac{5269+100}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{5269}{3600} me \frac{100}{3600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{5369}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 5269 ki te 100, ka 5369.
\sqrt{6\left(\frac{5369}{3600}+\frac{1}{49}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
\sqrt{6\left(\frac{263081}{176400}+\frac{3600}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 3600 me 49 ko 176400. Me tahuri \frac{5369}{3600} me \frac{1}{49} ki te hautau me te tautūnga 176400.
\sqrt{6\left(\frac{263081+3600}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{263081}{176400} me \frac{3600}{176400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{266681}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 263081 ki te 3600, ka 266681.
\sqrt{6\left(\frac{266681}{176400}+\frac{1}{64}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
\sqrt{6\left(\frac{1066724}{705600}+\frac{11025}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 176400 me 64 ko 705600. Me tahuri \frac{266681}{176400} me \frac{1}{64} ki te hautau me te tautūnga 705600.
\sqrt{6\left(\frac{1066724+11025}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{1066724}{705600} me \frac{11025}{705600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{1077749}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 1066724 ki te 11025, ka 1077749.
\sqrt{6\left(\frac{1077749}{705600}+\frac{1}{81}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\sqrt{6\left(\frac{9699741}{6350400}+\frac{78400}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 705600 me 81 ko 6350400. Me tahuri \frac{1077749}{705600} me \frac{1}{81} ki te hautau me te tautūnga 6350400.
\sqrt{6\left(\frac{9699741+78400}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{9699741}{6350400} me \frac{78400}{6350400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{9778141}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 9699741 ki te 78400, ka 9778141.
\sqrt{6\left(\frac{9778141}{6350400}+\frac{1}{100}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\sqrt{6\left(\frac{9778141}{6350400}+\frac{63504}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 6350400 me 100 ko 6350400. Me tahuri \frac{9778141}{6350400} me \frac{1}{100} ki te hautau me te tautūnga 6350400.
\sqrt{6\left(\frac{9778141+63504}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{9778141}{6350400} me \frac{63504}{6350400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{9841645}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 9778141 ki te 63504, ka 9841645.
\sqrt{6\left(\frac{1968329}{1270080}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Whakahekea te hautanga \frac{9841645}{6350400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{6\left(\frac{1968329}{1270080}+\frac{1}{121}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
\sqrt{6\left(\frac{238167809}{153679680}+\frac{1270080}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 1270080 me 121 ko 153679680. Me tahuri \frac{1968329}{1270080} me \frac{1}{121} ki te hautau me te tautūnga 153679680.
\sqrt{6\left(\frac{238167809+1270080}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{238167809}{153679680} me \frac{1270080}{153679680}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 238167809 ki te 1270080, ka 239437889.
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1}{144}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1067220}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 153679680 me 144 ko 153679680. Me tahuri \frac{239437889}{153679680} me \frac{1}{144} ki te hautau me te tautūnga 153679680.
\sqrt{6\left(\frac{239437889+1067220}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{239437889}{153679680} me \frac{1067220}{153679680}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{240505109}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 239437889 ki te 1067220, ka 240505109.
\sqrt{6\left(\frac{240505109}{153679680}+\frac{1}{169}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 13 mā te pū o 2, kia riro ko 169.
\sqrt{6\left(\frac{40645363421}{25971865920}+\frac{153679680}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 153679680 me 169 ko 25971865920. Me tahuri \frac{240505109}{153679680} me \frac{1}{169} ki te hautau me te tautūnga 25971865920.
\sqrt{6\left(\frac{40645363421+153679680}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{40645363421}{25971865920} me \frac{153679680}{25971865920}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 40645363421 ki te 153679680, ka 40799043101.
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{1}{196}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 14 mā te pū o 2, kia riro ko 196.
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{132509520}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 25971865920 me 196 ko 25971865920. Me tahuri \frac{40799043101}{25971865920} me \frac{1}{196} ki te hautau me te tautūnga 25971865920.
\sqrt{6\left(\frac{40799043101+132509520}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{40799043101}{25971865920} me \frac{132509520}{25971865920}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{40931552621}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 40799043101 ki te 132509520, ka 40931552621.
\sqrt{6\left(\frac{40931552621}{25971865920}+\frac{1}{225}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
\sqrt{6\left(\frac{204657763105}{129859329600}+\frac{577152576}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 25971865920 me 225 ko 129859329600. Me tahuri \frac{40931552621}{25971865920} me \frac{1}{225} ki te hautau me te tautūnga 129859329600.
\sqrt{6\left(\frac{204657763105+577152576}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{204657763105}{129859329600} me \frac{577152576}{129859329600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{205234915681}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 204657763105 ki te 577152576, ka 205234915681.
\sqrt{6\left(\frac{205234915681}{129859329600}+\frac{1}{256}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 16 mā te pū o 2, kia riro ko 256.
\sqrt{6\left(\frac{820939662724}{519437318400}+\frac{2029052025}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 129859329600 me 256 ko 519437318400. Me tahuri \frac{205234915681}{129859329600} me \frac{1}{256} ki te hautau me te tautūnga 519437318400.
\sqrt{6\left(\frac{820939662724+2029052025}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{820939662724}{519437318400} me \frac{2029052025}{519437318400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{822968714749}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 820939662724 ki te 2029052025, ka 822968714749.
\sqrt{6\left(\frac{822968714749}{519437318400}+\frac{1}{289}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 17 mā te pū o 2, kia riro ko 289.
\sqrt{6\left(\frac{237837958562461}{150117385017600}+\frac{519437318400}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 519437318400 me 289 ko 150117385017600. Me tahuri \frac{822968714749}{519437318400} me \frac{1}{289} ki te hautau me te tautūnga 150117385017600.
\sqrt{6\left(\frac{237837958562461+519437318400}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{237837958562461}{150117385017600} me \frac{519437318400}{150117385017600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 237837958562461 ki te 519437318400, ka 238357395880861.
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{1}{324}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{463325262400}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 150117385017600 me 324 ko 150117385017600. Me tahuri \frac{238357395880861}{150117385017600} me \frac{1}{324} ki te hautau me te tautūnga 150117385017600.
\sqrt{6\left(\frac{238357395880861+463325262400}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{238357395880861}{150117385017600} me \frac{463325262400}{150117385017600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{238820721143261}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 238357395880861 ki te 463325262400, ka 238820721143261.
\sqrt{6\left(\frac{238820721143261}{150117385017600}+\frac{1}{361}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tātaihia te 19 mā te pū o 2, kia riro ko 361.
\sqrt{6\left(\frac{86214280332717221}{54192375991353600}+\frac{150117385017600}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 150117385017600 me 361 ko 54192375991353600. Me tahuri \frac{238820721143261}{150117385017600} me \frac{1}{361} ki te hautau me te tautūnga 54192375991353600.
\sqrt{6\left(\frac{86214280332717221+150117385017600}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{86214280332717221}{54192375991353600} me \frac{150117385017600}{54192375991353600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tāpirihia te 86214280332717221 ki te 150117385017600, ka 86364397717734821.
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{1}{400}+\frac{1}{21^{2}}\right)}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{135480939978384}{54192375991353600}+\frac{1}{21^{2}}\right)}
Ko te maha noa iti rawa atu o 54192375991353600 me 400 ko 54192375991353600. Me tahuri \frac{86364397717734821}{54192375991353600} me \frac{1}{400} ki te hautau me te tautūnga 54192375991353600.
\sqrt{6\left(\frac{86364397717734821+135480939978384}{54192375991353600}+\frac{1}{21^{2}}\right)}
Tā te mea he rite te tauraro o \frac{86364397717734821}{54192375991353600} me \frac{135480939978384}{54192375991353600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\left(\frac{86499878657713205}{54192375991353600}+\frac{1}{21^{2}}\right)}
Tāpirihia te 86364397717734821 ki te 135480939978384, ka 86499878657713205.
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{1}{21^{2}}\right)}
Whakahekea te hautanga \frac{86499878657713205}{54192375991353600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{1}{441}\right)}
Tātaihia te 21 mā te pū o 2, kia riro ko 441.
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{24577041265920}{10838475198270720}\right)}
Ko te maha noa iti rawa atu o 10838475198270720 me 441 ko 10838475198270720. Me tahuri \frac{17299975731542641}{10838475198270720} me \frac{1}{441} ki te hautau me te tautūnga 10838475198270720.
\sqrt{6\times \frac{17299975731542641+24577041265920}{10838475198270720}}
Tā te mea he rite te tauraro o \frac{17299975731542641}{10838475198270720} me \frac{24577041265920}{10838475198270720}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{6\times \frac{17324552772808561}{10838475198270720}}
Tāpirihia te 17299975731542641 ki te 24577041265920, ka 17324552772808561.
\sqrt{6\times \frac{353562301485889}{221193371393280}}
Whakahekea te hautanga \frac{17324552772808561}{10838475198270720} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 49.
\sqrt{\frac{6\times 353562301485889}{221193371393280}}
Tuhia te 6\times \frac{353562301485889}{221193371393280} hei hautanga kotahi.
\sqrt{\frac{2121373808915334}{221193371393280}}
Whakareatia te 6 ki te 353562301485889, ka 2121373808915334.
\sqrt{\frac{353562301485889}{36865561898880}}
Whakahekea te hautanga \frac{2121373808915334}{221193371393280} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\sqrt{353562301485889}}{\sqrt{36865561898880}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{353562301485889}{36865561898880}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{353562301485889}}{\sqrt{36865561898880}}.
\frac{\sqrt{353562301485889}}{1108536\sqrt{30}}
Tauwehea te 36865561898880=1108536^{2}\times 30. Tuhia anō te pūtake rua o te hua \sqrt{1108536^{2}\times 30} hei hua o ngā pūtake rua \sqrt{1108536^{2}}\sqrt{30}. Tuhia te pūtakerua o te 1108536^{2}.
\frac{\sqrt{353562301485889}\sqrt{30}}{1108536\left(\sqrt{30}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{353562301485889}}{1108536\sqrt{30}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{30}.
\frac{\sqrt{353562301485889}\sqrt{30}}{1108536\times 30}
Ko te pūrua o \sqrt{30} ko 30.
\frac{\sqrt{10606869044576670}}{1108536\times 30}
Hei whakarea \sqrt{353562301485889} me \sqrt{30}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{10606869044576670}}{33256080}
Whakareatia te 1108536 ki te 30, ka 33256080.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}