Whakaoti mō x
x = \frac{\sqrt{13} - 1}{2} \approx 1.302775638
x=\frac{-\sqrt{13}-1}{2}\approx -2.302775638
Graph
Pātaitai
Algebra
\sqrt{ 5x+12 } =x+3
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{5x+12}\right)^{2}=\left(x+3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
5x+12=\left(x+3\right)^{2}
Tātaihia te \sqrt{5x+12} mā te pū o 2, kia riro ko 5x+12.
5x+12=x^{2}+6x+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
5x+12-x^{2}=6x+9
Tangohia te x^{2} mai i ngā taha e rua.
5x+12-x^{2}-6x=9
Tangohia te 6x mai i ngā taha e rua.
-x+12-x^{2}=9
Pahekotia te 5x me -6x, ka -x.
-x+12-x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
-x+3-x^{2}=0
Tangohia te 9 i te 12, ka 3.
-x^{2}-x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -1 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 3}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-1\right)±\sqrt{1+12}}{2\left(-1\right)}
Whakareatia 4 ki te 3.
x=\frac{-\left(-1\right)±\sqrt{13}}{2\left(-1\right)}
Tāpiri 1 ki te 12.
x=\frac{1±\sqrt{13}}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{13}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{13}+1}{-2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{13}}{-2} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{13}.
x=\frac{-\sqrt{13}-1}{2}
Whakawehe 1+\sqrt{13} ki te -2.
x=\frac{1-\sqrt{13}}{-2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{13}}{-2} ina he tango te ±. Tango \sqrt{13} mai i 1.
x=\frac{\sqrt{13}-1}{2}
Whakawehe 1-\sqrt{13} ki te -2.
x=\frac{-\sqrt{13}-1}{2} x=\frac{\sqrt{13}-1}{2}
Kua oti te whārite te whakatau.
\sqrt{5\times \frac{-\sqrt{13}-1}{2}+12}=\frac{-\sqrt{13}-1}{2}+3
Whakakapia te \frac{-\sqrt{13}-1}{2} mō te x i te whārite \sqrt{5x+12}=x+3.
\frac{5}{2}-\frac{1}{2}\times 13^{\frac{1}{2}}=-\frac{1}{2}\times 13^{\frac{1}{2}}+\frac{5}{2}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{13}-1}{2} kua ngata te whārite.
\sqrt{5\times \frac{\sqrt{13}-1}{2}+12}=\frac{\sqrt{13}-1}{2}+3
Whakakapia te \frac{\sqrt{13}-1}{2} mō te x i te whārite \sqrt{5x+12}=x+3.
\frac{5}{2}+\frac{1}{2}\times 13^{\frac{1}{2}}=\frac{1}{2}\times 13^{\frac{1}{2}}+\frac{5}{2}
Whakarūnātia. Ko te uara x=\frac{\sqrt{13}-1}{2} kua ngata te whārite.
x=\frac{-\sqrt{13}-1}{2} x=\frac{\sqrt{13}-1}{2}
Rārangihia ngā rongoā katoa o \sqrt{5x+12}=x+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}