Aromātai
3\sqrt{3}\approx 5.196152423
Tohaina
Kua tāruatia ki te papatopenga
14\sqrt{3}-\sqrt{300}+\sqrt{108}-21\sqrt{3^{-1}}
Tauwehea te 588=14^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{14^{2}\times 3} hei hua o ngā pūtake rua \sqrt{14^{2}}\sqrt{3}. Tuhia te pūtakerua o te 14^{2}.
14\sqrt{3}-10\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
Tauwehea te 300=10^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 3} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{3}. Tuhia te pūtakerua o te 10^{2}.
4\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
Pahekotia te 14\sqrt{3} me -10\sqrt{3}, ka 4\sqrt{3}.
4\sqrt{3}+6\sqrt{3}-21\sqrt{3^{-1}}
Tauwehea te 108=6^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 3} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{3}. Tuhia te pūtakerua o te 6^{2}.
10\sqrt{3}-21\sqrt{3^{-1}}
Pahekotia te 4\sqrt{3} me 6\sqrt{3}, ka 10\sqrt{3}.
10\sqrt{3}-21\sqrt{\frac{1}{3}}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
10\sqrt{3}-21\times \frac{\sqrt{1}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
10\sqrt{3}-21\times \frac{1}{\sqrt{3}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
10\sqrt{3}-21\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
10\sqrt{3}-21\times \frac{\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
10\sqrt{3}-7\sqrt{3}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 21 me te 3.
3\sqrt{3}
Pahekotia te 10\sqrt{3} me -7\sqrt{3}, ka 3\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}