Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

14\sqrt{3}-\sqrt{300}+\sqrt{108}-21\sqrt{3^{-1}}
Tauwehea te 588=14^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{14^{2}\times 3} hei hua o ngā pūtake rua \sqrt{14^{2}}\sqrt{3}. Tuhia te pūtakerua o te 14^{2}.
14\sqrt{3}-10\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
Tauwehea te 300=10^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 3} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{3}. Tuhia te pūtakerua o te 10^{2}.
4\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
Pahekotia te 14\sqrt{3} me -10\sqrt{3}, ka 4\sqrt{3}.
4\sqrt{3}+6\sqrt{3}-21\sqrt{3^{-1}}
Tauwehea te 108=6^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 3} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{3}. Tuhia te pūtakerua o te 6^{2}.
10\sqrt{3}-21\sqrt{3^{-1}}
Pahekotia te 4\sqrt{3} me 6\sqrt{3}, ka 10\sqrt{3}.
10\sqrt{3}-21\sqrt{\frac{1}{3}}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
10\sqrt{3}-21\times \frac{\sqrt{1}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
10\sqrt{3}-21\times \frac{1}{\sqrt{3}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
10\sqrt{3}-21\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
10\sqrt{3}-21\times \frac{\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
10\sqrt{3}-7\sqrt{3}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 21 me te 3.
3\sqrt{3}
Pahekotia te 10\sqrt{3} me -7\sqrt{3}, ka 3\sqrt{3}.