Aromātai
260
Tauwehe
2^{2}\times 5\times 13
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{26}\sqrt{2}\sqrt{50}\sqrt{26}
Tauwehea te 52=26\times 2. Tuhia anō te pūtake rua o te hua \sqrt{26\times 2} hei hua o ngā pūtake rua \sqrt{26}\sqrt{2}.
26\sqrt{50}\sqrt{2}
Whakareatia te \sqrt{26} ki te \sqrt{26}, ka 26.
26\sqrt{2}\sqrt{25}\sqrt{2}
Tauwehea te 50=2\times 25. Tuhia anō te pūtake rua o te hua \sqrt{2\times 25} hei hua o ngā pūtake rua \sqrt{2}\sqrt{25}.
26\times 2\sqrt{25}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
52\sqrt{25}
Whakareatia te 26 ki te 2, ka 52.
52\times 5
Tātaitia te pūtakerua o 25 kia tae ki 5.
260
Whakareatia te 52 ki te 5, ka 260.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}