Whakaoti mō x
x = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{5x\times 3}=3x
Me tango -3x mai i ngā taha e rua o te whārite.
2\sqrt{15x}=3x
Whakareatia te 5 ki te 3, ka 15.
\left(2\sqrt{15x}\right)^{2}=\left(3x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{15x}\right)^{2}=\left(3x\right)^{2}
Whakarohaina te \left(2\sqrt{15x}\right)^{2}.
4\left(\sqrt{15x}\right)^{2}=\left(3x\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\times 15x=\left(3x\right)^{2}
Tātaihia te \sqrt{15x} mā te pū o 2, kia riro ko 15x.
60x=\left(3x\right)^{2}
Whakareatia te 4 ki te 15, ka 60.
60x=3^{2}x^{2}
Whakarohaina te \left(3x\right)^{2}.
60x=9x^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
60x-9x^{2}=0
Tangohia te 9x^{2} mai i ngā taha e rua.
x\left(60-9x\right)=0
Tauwehea te x.
x=0 x=\frac{20}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te 60-9x=0.
2\sqrt{5\times 0\times 3}-3\times 0=0
Whakakapia te 0 mō te x i te whārite 2\sqrt{5x\times 3}-3x=0.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
2\sqrt{5\times \frac{20}{3}\times 3}-3\times \frac{20}{3}=0
Whakakapia te \frac{20}{3} mō te x i te whārite 2\sqrt{5x\times 3}-3x=0.
0=0
Whakarūnātia. Ko te uara x=\frac{20}{3} kua ngata te whārite.
x=0 x=\frac{20}{3}
Rārangihia ngā rongoā katoa o 2\sqrt{15x}=3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}