Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{4y+1}=3+\sqrt{y-2}
Me tango -\sqrt{y-2} mai i ngā taha e rua o te whārite.
\left(\sqrt{4y+1}\right)^{2}=\left(3+\sqrt{y-2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4y+1=\left(3+\sqrt{y-2}\right)^{2}
Tātaihia te \sqrt{4y+1} mā te pū o 2, kia riro ko 4y+1.
4y+1=9+6\sqrt{y-2}+\left(\sqrt{y-2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+\sqrt{y-2}\right)^{2}.
4y+1=9+6\sqrt{y-2}+y-2
Tātaihia te \sqrt{y-2} mā te pū o 2, kia riro ko y-2.
4y+1=7+6\sqrt{y-2}+y
Tangohia te 2 i te 9, ka 7.
4y+1-\left(7+y\right)=6\sqrt{y-2}
Me tango 7+y mai i ngā taha e rua o te whārite.
4y+1-7-y=6\sqrt{y-2}
Hei kimi i te tauaro o 7+y, kimihia te tauaro o ia taurangi.
4y-6-y=6\sqrt{y-2}
Tangohia te 7 i te 1, ka -6.
3y-6=6\sqrt{y-2}
Pahekotia te 4y me -y, ka 3y.
\left(3y-6\right)^{2}=\left(6\sqrt{y-2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
9y^{2}-36y+36=\left(6\sqrt{y-2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3y-6\right)^{2}.
9y^{2}-36y+36=6^{2}\left(\sqrt{y-2}\right)^{2}
Whakarohaina te \left(6\sqrt{y-2}\right)^{2}.
9y^{2}-36y+36=36\left(\sqrt{y-2}\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
9y^{2}-36y+36=36\left(y-2\right)
Tātaihia te \sqrt{y-2} mā te pū o 2, kia riro ko y-2.
9y^{2}-36y+36=36y-72
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te y-2.
9y^{2}-36y+36-36y=-72
Tangohia te 36y mai i ngā taha e rua.
9y^{2}-72y+36=-72
Pahekotia te -36y me -36y, ka -72y.
9y^{2}-72y+36+72=0
Me tāpiri te 72 ki ngā taha e rua.
9y^{2}-72y+108=0
Tāpirihia te 36 ki te 72, ka 108.
y^{2}-8y+12=0
Whakawehea ngā taha e rua ki te 9.
a+b=-8 ab=1\times 12=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(y^{2}-6y\right)+\left(-2y+12\right)
Tuhia anō te y^{2}-8y+12 hei \left(y^{2}-6y\right)+\left(-2y+12\right).
y\left(y-6\right)-2\left(y-6\right)
Tauwehea te y i te tuatahi me te -2 i te rōpū tuarua.
\left(y-6\right)\left(y-2\right)
Whakatauwehea atu te kīanga pātahi y-6 mā te whakamahi i te āhuatanga tātai tohatoha.
y=6 y=2
Hei kimi otinga whārite, me whakaoti te y-6=0 me te y-2=0.
\sqrt{4\times 6+1}-\sqrt{6-2}=3
Whakakapia te 6 mō te y i te whārite \sqrt{4y+1}-\sqrt{y-2}=3.
3=3
Whakarūnātia. Ko te uara y=6 kua ngata te whārite.
\sqrt{4\times 2+1}-\sqrt{2-2}=3
Whakakapia te 2 mō te y i te whārite \sqrt{4y+1}-\sqrt{y-2}=3.
3=3
Whakarūnātia. Ko te uara y=2 kua ngata te whārite.
y=6 y=2
Rārangihia ngā rongoā katoa o \sqrt{4y+1}=\sqrt{y-2}+3.