Whakaoti mō n
n=\sqrt{7}+2\approx 4.645751311
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{4n+3}\right)^{2}=n^{2}
Pūruatia ngā taha e rua o te whārite.
4n+3=n^{2}
Tātaihia te \sqrt{4n+3} mā te pū o 2, kia riro ko 4n+3.
4n+3-n^{2}=0
Tangohia te n^{2} mai i ngā taha e rua.
-n^{2}+4n+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 4 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Pūrua 4.
n=\frac{-4±\sqrt{16+4\times 3}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
n=\frac{-4±\sqrt{16+12}}{2\left(-1\right)}
Whakareatia 4 ki te 3.
n=\frac{-4±\sqrt{28}}{2\left(-1\right)}
Tāpiri 16 ki te 12.
n=\frac{-4±2\sqrt{7}}{2\left(-1\right)}
Tuhia te pūtakerua o te 28.
n=\frac{-4±2\sqrt{7}}{-2}
Whakareatia 2 ki te -1.
n=\frac{2\sqrt{7}-4}{-2}
Nā, me whakaoti te whārite n=\frac{-4±2\sqrt{7}}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{7}.
n=2-\sqrt{7}
Whakawehe -4+2\sqrt{7} ki te -2.
n=\frac{-2\sqrt{7}-4}{-2}
Nā, me whakaoti te whārite n=\frac{-4±2\sqrt{7}}{-2} ina he tango te ±. Tango 2\sqrt{7} mai i -4.
n=\sqrt{7}+2
Whakawehe -4-2\sqrt{7} ki te -2.
n=2-\sqrt{7} n=\sqrt{7}+2
Kua oti te whārite te whakatau.
\sqrt{4\left(2-\sqrt{7}\right)+3}=2-\sqrt{7}
Whakakapia te 2-\sqrt{7} mō te n i te whārite \sqrt{4n+3}=n.
7^{\frac{1}{2}}-2=2-7^{\frac{1}{2}}
Whakarūnātia. Ko te uara n=2-\sqrt{7} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{4\left(\sqrt{7}+2\right)+3}=\sqrt{7}+2
Whakakapia te \sqrt{7}+2 mō te n i te whārite \sqrt{4n+3}=n.
2+7^{\frac{1}{2}}=2+7^{\frac{1}{2}}
Whakarūnātia. Ko te uara n=\sqrt{7}+2 kua ngata te whārite.
n=\sqrt{7}+2
Ko te whārite \sqrt{4n+3}=n he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}