Aromātai
\frac{5\sqrt{16025521611514573029}}{62612}\approx 319682.243841419
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{281544652345653075}{2754928}}
Whakareatia te 4864284277 ki te 57879975, ka 281544652345653075.
\frac{\sqrt{281544652345653075}}{\sqrt{2754928}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{281544652345653075}{2754928}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{281544652345653075}}{\sqrt{2754928}}.
\frac{5\sqrt{11261786093826123}}{\sqrt{2754928}}
Tauwehea te 281544652345653075=5^{2}\times 11261786093826123. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 11261786093826123} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{11261786093826123}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{11261786093826123}}{44\sqrt{1423}}
Tauwehea te 2754928=44^{2}\times 1423. Tuhia anō te pūtake rua o te hua \sqrt{44^{2}\times 1423} hei hua o ngā pūtake rua \sqrt{44^{2}}\sqrt{1423}. Tuhia te pūtakerua o te 44^{2}.
\frac{5\sqrt{11261786093826123}\sqrt{1423}}{44\left(\sqrt{1423}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5\sqrt{11261786093826123}}{44\sqrt{1423}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{1423}.
\frac{5\sqrt{11261786093826123}\sqrt{1423}}{44\times 1423}
Ko te pūrua o \sqrt{1423} ko 1423.
\frac{5\sqrt{16025521611514573029}}{44\times 1423}
Hei whakarea \sqrt{11261786093826123} me \sqrt{1423}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5\sqrt{16025521611514573029}}{62612}
Whakareatia te 44 ki te 1423, ka 62612.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}