Aromātai
12\sqrt{3}\approx 20.784609691
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt{ 48 } +5 \sqrt{ 12 } - \sqrt{ 147 } + \sqrt{ 75 }
Tohaina
Kua tāruatia ki te papatopenga
4\sqrt{3}+5\sqrt{12}-\sqrt{147}+\sqrt{75}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{3}+5\times 2\sqrt{3}-\sqrt{147}+\sqrt{75}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
4\sqrt{3}+10\sqrt{3}-\sqrt{147}+\sqrt{75}
Whakareatia te 5 ki te 2, ka 10.
14\sqrt{3}-\sqrt{147}+\sqrt{75}
Pahekotia te 4\sqrt{3} me 10\sqrt{3}, ka 14\sqrt{3}.
14\sqrt{3}-7\sqrt{3}+\sqrt{75}
Tauwehea te 147=7^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 3} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{3}. Tuhia te pūtakerua o te 7^{2}.
7\sqrt{3}+\sqrt{75}
Pahekotia te 14\sqrt{3} me -7\sqrt{3}, ka 7\sqrt{3}.
7\sqrt{3}+5\sqrt{3}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
12\sqrt{3}
Pahekotia te 7\sqrt{3} me 5\sqrt{3}, ka 12\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}