Aromātai
20\sqrt{6}\approx 48.989794856
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{45\times 5\times \frac{8}{3}}
Whakawehe 45 ki te \frac{1}{5} mā te whakarea 45 ki te tau huripoki o \frac{1}{5}.
2\sqrt{225\times \frac{8}{3}}
Whakareatia te 45 ki te 5, ka 225.
2\sqrt{\frac{225\times 8}{3}}
Tuhia te 225\times \frac{8}{3} hei hautanga kotahi.
2\sqrt{\frac{1800}{3}}
Whakareatia te 225 ki te 8, ka 1800.
2\sqrt{600}
Whakawehea te 1800 ki te 3, kia riro ko 600.
2\times 10\sqrt{6}
Tauwehea te 600=10^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 6} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{6}. Tuhia te pūtakerua o te 10^{2}.
20\sqrt{6}
Whakareatia te 2 ki te 10, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}