Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{4-3x}\right)^{2}=\left(\sqrt{x+2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4-3x=\left(\sqrt{x+2}\right)^{2}
Tātaihia te \sqrt{4-3x} mā te pū o 2, kia riro ko 4-3x.
4-3x=x+2
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
4-3x-x=2
Tangohia te x mai i ngā taha e rua.
4-4x=2
Pahekotia te -3x me -x, ka -4x.
-4x=2-4
Tangohia te 4 mai i ngā taha e rua.
-4x=-2
Tangohia te 4 i te 2, ka -2.
x=\frac{-2}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
\sqrt{4-3\times \frac{1}{2}}=\sqrt{\frac{1}{2}+2}
Whakakapia te \frac{1}{2} mō te x i te whārite \sqrt{4-3x}=\sqrt{x+2}.
\frac{1}{2}\times 10^{\frac{1}{2}}=\frac{1}{2}\times 10^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1}{2} kua ngata te whārite.
x=\frac{1}{2}
Ko te whārite \sqrt{4-3x}=\sqrt{x+2} he rongoā ahurei.