Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{4-3x}\right)^{2}=\left(\sqrt{x+2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4-3x=\left(\sqrt{x+2}\right)^{2}
Tātaihia te \sqrt{4-3x} mā te pū o 2, kia riro ko 4-3x.
4-3x=x+2
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
4-3x-x=2
Tangohia te x mai i ngā taha e rua.
4-4x=2
Pahekotia te -3x me -x, ka -4x.
-4x=2-4
Tangohia te 4 mai i ngā taha e rua.
-4x=-2
Tangohia te 4 i te 2, ka -2.
x=\frac{-2}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
\sqrt{4-3\times \frac{1}{2}}=\sqrt{\frac{1}{2}+2}
Whakakapia te \frac{1}{2} mō te x i te whārite \sqrt{4-3x}=\sqrt{x+2}.
\frac{1}{2}\times 10^{\frac{1}{2}}=\frac{1}{2}\times 10^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1}{2} kua ngata te whārite.
x=\frac{1}{2}
Ko te whārite \sqrt{4-3x}=\sqrt{x+2} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}