Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{4+2x-x^{2}}\right)^{2}=\left(x-2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4+2x-x^{2}=\left(x-2\right)^{2}
Tātaihia te \sqrt{4+2x-x^{2}} mā te pū o 2, kia riro ko 4+2x-x^{2}.
4+2x-x^{2}=x^{2}-4x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
4+2x-x^{2}-x^{2}=-4x+4
Tangohia te x^{2} mai i ngā taha e rua.
4+2x-2x^{2}=-4x+4
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
4+2x-2x^{2}+4x=4
Me tāpiri te 4x ki ngā taha e rua.
4+6x-2x^{2}=4
Pahekotia te 2x me 4x, ka 6x.
4+6x-2x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
6x-2x^{2}=0
Tangohia te 4 i te 4, ka 0.
x\left(6-2x\right)=0
Tauwehea te x.
x=0 x=3
Hei kimi otinga whārite, me whakaoti te x=0 me te 6-2x=0.
\sqrt{4+2\times 0-0^{2}}=0-2
Whakakapia te 0 mō te x i te whārite \sqrt{4+2x-x^{2}}=x-2.
2=-2
Whakarūnātia. Ko te uara x=0 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{4+2\times 3-3^{2}}=3-2
Whakakapia te 3 mō te x i te whārite \sqrt{4+2x-x^{2}}=x-2.
1=1
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
x=3
Ko te whārite \sqrt{4+2x-x^{2}}=x-2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}