Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{4+2x-x^{2}}\right)^{2}=\left(x-2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4+2x-x^{2}=\left(x-2\right)^{2}
Tātaihia te \sqrt{4+2x-x^{2}} mā te pū o 2, kia riro ko 4+2x-x^{2}.
4+2x-x^{2}=x^{2}-4x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
4+2x-x^{2}-x^{2}=-4x+4
Tangohia te x^{2} mai i ngā taha e rua.
4+2x-2x^{2}=-4x+4
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
4+2x-2x^{2}+4x=4
Me tāpiri te 4x ki ngā taha e rua.
4+6x-2x^{2}=4
Pahekotia te 2x me 4x, ka 6x.
4+6x-2x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
6x-2x^{2}=0
Tangohia te 4 i te 4, ka 0.
x\left(6-2x\right)=0
Tauwehea te x.
x=0 x=3
Hei kimi otinga whārite, me whakaoti te x=0 me te 6-2x=0.
\sqrt{4+2\times 0-0^{2}}=0-2
Whakakapia te 0 mō te x i te whārite \sqrt{4+2x-x^{2}}=x-2.
2=-2
Whakarūnātia. Ko te uara x=0 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{4+2\times 3-3^{2}}=3-2
Whakakapia te 3 mō te x i te whārite \sqrt{4+2x-x^{2}}=x-2.
1=1
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
x=3
Ko te whārite \sqrt{4+2x-x^{2}}=x-2 he rongoā ahurei.