Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\sqrt{9\sqrt{0\sqrt{8}}}}}}}}}
Whakareatia te 0 ki te 1, ka 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\sqrt{9\sqrt{0\times 2\sqrt{2}}}}}}}}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\sqrt{9\sqrt{0\sqrt{2}}}}}}}}}
Whakareatia te 0 ki te 2, ka 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\sqrt{9\sqrt{0}}}}}}}}
Ko te tau i whakarea ki te kore ka hua ko te kore.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\sqrt{9\times 0}}}}}}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\sqrt{0}}}}}}}
Whakareatia te 9 ki te 0, ka 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0\times 0}}}}}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\sqrt{0}}}}}}
Whakareatia te 0 ki te 0, ka 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{2\times 0}}}}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{0}}}}}
Whakareatia te 2 ki te 0, ka 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{7\times 0}}}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{4\sqrt{5\sqrt{6\sqrt{0}}}}
Whakareatia te 7 ki te 0, ka 0.
\sqrt{4\sqrt{5\sqrt{6\times 0}}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{4\sqrt{5\sqrt{0}}}
Whakareatia te 6 ki te 0, ka 0.
\sqrt{4\sqrt{5\times 0}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{4\sqrt{0}}
Whakareatia te 5 ki te 0, ka 0.
\sqrt{4\times 0}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\sqrt{0}
Whakareatia te 4 ki te 0, ka 0.
0
Tātaitia te pūtakerua o 0 kia tae ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}