Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{3x+12}-1\right)^{2}=\left(\sqrt{5x+9}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{3x+12}\right)^{2}-2\sqrt{3x+12}+1=\left(\sqrt{5x+9}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3x+12}-1\right)^{2}.
3x+12-2\sqrt{3x+12}+1=\left(\sqrt{5x+9}\right)^{2}
Tātaihia te \sqrt{3x+12} mā te pū o 2, kia riro ko 3x+12.
3x+13-2\sqrt{3x+12}=\left(\sqrt{5x+9}\right)^{2}
Tāpirihia te 12 ki te 1, ka 13.
3x+13-2\sqrt{3x+12}=5x+9
Tātaihia te \sqrt{5x+9} mā te pū o 2, kia riro ko 5x+9.
-2\sqrt{3x+12}=5x+9-\left(3x+13\right)
Me tango 3x+13 mai i ngā taha e rua o te whārite.
-2\sqrt{3x+12}=5x+9-3x-13
Hei kimi i te tauaro o 3x+13, kimihia te tauaro o ia taurangi.
-2\sqrt{3x+12}=2x+9-13
Pahekotia te 5x me -3x, ka 2x.
-2\sqrt{3x+12}=2x-4
Tangohia te 13 i te 9, ka -4.
\left(-2\sqrt{3x+12}\right)^{2}=\left(2x-4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{3x+12}\right)^{2}=\left(2x-4\right)^{2}
Whakarohaina te \left(-2\sqrt{3x+12}\right)^{2}.
4\left(\sqrt{3x+12}\right)^{2}=\left(2x-4\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\left(3x+12\right)=\left(2x-4\right)^{2}
Tātaihia te \sqrt{3x+12} mā te pū o 2, kia riro ko 3x+12.
12x+48=\left(2x-4\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3x+12.
12x+48=4x^{2}-16x+16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-4\right)^{2}.
12x+48-4x^{2}=-16x+16
Tangohia te 4x^{2} mai i ngā taha e rua.
12x+48-4x^{2}+16x=16
Me tāpiri te 16x ki ngā taha e rua.
28x+48-4x^{2}=16
Pahekotia te 12x me 16x, ka 28x.
28x+48-4x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
28x+32-4x^{2}=0
Tangohia te 16 i te 48, ka 32.
7x+8-x^{2}=0
Whakawehea ngā taha e rua ki te 4.
-x^{2}+7x+8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=-8=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,8 -2,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
-1+8=7 -2+4=2
Tātaihia te tapeke mō ia takirua.
a=8 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(-x^{2}+8x\right)+\left(-x+8\right)
Tuhia anō te -x^{2}+7x+8 hei \left(-x^{2}+8x\right)+\left(-x+8\right).
-x\left(x-8\right)-\left(x-8\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-8\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-1
Hei kimi otinga whārite, me whakaoti te x-8=0 me te -x-1=0.
\sqrt{3\times 8+12}-1=\sqrt{5\times 8+9}
Whakakapia te 8 mō te x i te whārite \sqrt{3x+12}-1=\sqrt{5x+9}.
5=7
Whakarūnātia. Ko te uara x=8 kāore e ngata ana ki te whārite.
\sqrt{3\left(-1\right)+12}-1=\sqrt{5\left(-1\right)+9}
Whakakapia te -1 mō te x i te whārite \sqrt{3x+12}-1=\sqrt{5x+9}.
2=2
Whakarūnātia. Ko te uara x=-1 kua ngata te whārite.
x=-1
Ko te whārite \sqrt{3x+12}-1=\sqrt{5x+9} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}