Whakaoti mō x
x=-2
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{3x+10}\right)^{2}=\left(x+4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3x+10=\left(x+4\right)^{2}
Tātaihia te \sqrt{3x+10} mā te pū o 2, kia riro ko 3x+10.
3x+10=x^{2}+8x+16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
3x+10-x^{2}=8x+16
Tangohia te x^{2} mai i ngā taha e rua.
3x+10-x^{2}-8x=16
Tangohia te 8x mai i ngā taha e rua.
-5x+10-x^{2}=16
Pahekotia te 3x me -8x, ka -5x.
-5x+10-x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
-5x-6-x^{2}=0
Tangohia te 16 i te 10, ka -6.
-x^{2}-5x-6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=-\left(-6\right)=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-2 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(-x^{2}-2x\right)+\left(-3x-6\right)
Tuhia anō te -x^{2}-5x-6 hei \left(-x^{2}-2x\right)+\left(-3x-6\right).
x\left(-x-2\right)+3\left(-x-2\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(-x-2\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi -x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-3
Hei kimi otinga whārite, me whakaoti te -x-2=0 me te x+3=0.
\sqrt{3\left(-2\right)+10}=-2+4
Whakakapia te -2 mō te x i te whārite \sqrt{3x+10}=x+4.
2=2
Whakarūnātia. Ko te uara x=-2 kua ngata te whārite.
\sqrt{3\left(-3\right)+10}=-3+4
Whakakapia te -3 mō te x i te whārite \sqrt{3x+10}=x+4.
1=1
Whakarūnātia. Ko te uara x=-3 kua ngata te whārite.
x=-2 x=-3
Rārangihia ngā rongoā katoa o \sqrt{3x+10}=x+4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}