Aromātai
45\sqrt{5}\approx 100.623058987
Tohaina
Kua tāruatia ki te papatopenga
5\sqrt{15}\sqrt{27}
Tauwehea te 375=5^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 15} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{15}. Tuhia te pūtakerua o te 5^{2}.
5\sqrt{15}\times 3\sqrt{3}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
15\sqrt{15}\sqrt{3}
Whakareatia te 5 ki te 3, ka 15.
15\sqrt{3}\sqrt{5}\sqrt{3}
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
15\times 3\sqrt{5}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
45\sqrt{5}
Whakareatia te 15 ki te 3, ka 45.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}