Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3}x-2\sqrt{3}=\sqrt{48}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{3} ki te x-2.
\sqrt{3}x-2\sqrt{3}=4\sqrt{3}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\sqrt{3}x=4\sqrt{3}+2\sqrt{3}
Me tāpiri te 2\sqrt{3} ki ngā taha e rua.
\sqrt{3}x=6\sqrt{3}
Pahekotia te 4\sqrt{3} me 2\sqrt{3}, ka 6\sqrt{3}.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{6\sqrt{3}}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
x=\frac{6\sqrt{3}}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
x=6
Whakawehe 6\sqrt{3} ki te \sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}