Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2x-3}\right)^{2}=\left(2+\sqrt{x-5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x-3=\left(2+\sqrt{x-5}\right)^{2}
Tātaihia te \sqrt{2x-3} mā te pū o 2, kia riro ko 2x-3.
2x-3=4+4\sqrt{x-5}+\left(\sqrt{x-5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{x-5}\right)^{2}.
2x-3=4+4\sqrt{x-5}+x-5
Tātaihia te \sqrt{x-5} mā te pū o 2, kia riro ko x-5.
2x-3=-1+4\sqrt{x-5}+x
Tangohia te 5 i te 4, ka -1.
2x-3-\left(-1+x\right)=4\sqrt{x-5}
Me tango -1+x mai i ngā taha e rua o te whārite.
2x-3+1-x=4\sqrt{x-5}
Hei kimi i te tauaro o -1+x, kimihia te tauaro o ia taurangi.
2x-2-x=4\sqrt{x-5}
Tāpirihia te -3 ki te 1, ka -2.
x-2=4\sqrt{x-5}
Pahekotia te 2x me -x, ka x.
\left(x-2\right)^{2}=\left(4\sqrt{x-5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-4x+4=\left(4\sqrt{x-5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4=4^{2}\left(\sqrt{x-5}\right)^{2}
Whakarohaina te \left(4\sqrt{x-5}\right)^{2}.
x^{2}-4x+4=16\left(\sqrt{x-5}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
x^{2}-4x+4=16\left(x-5\right)
Tātaihia te \sqrt{x-5} mā te pū o 2, kia riro ko x-5.
x^{2}-4x+4=16x-80
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te x-5.
x^{2}-4x+4-16x=-80
Tangohia te 16x mai i ngā taha e rua.
x^{2}-20x+4=-80
Pahekotia te -4x me -16x, ka -20x.
x^{2}-20x+4+80=0
Me tāpiri te 80 ki ngā taha e rua.
x^{2}-20x+84=0
Tāpirihia te 4 ki te 80, ka 84.
a+b=-20 ab=84
Hei whakaoti i te whārite, whakatauwehea te x^{2}-20x+84 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Tātaihia te tapeke mō ia takirua.
a=-14 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(x-14\right)\left(x-6\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=14 x=6
Hei kimi otinga whārite, me whakaoti te x-14=0 me te x-6=0.
\sqrt{2\times 14-3}=2+\sqrt{14-5}
Whakakapia te 14 mō te x i te whārite \sqrt{2x-3}=2+\sqrt{x-5}.
5=5
Whakarūnātia. Ko te uara x=14 kua ngata te whārite.
\sqrt{2\times 6-3}=2+\sqrt{6-5}
Whakakapia te 6 mō te x i te whārite \sqrt{2x-3}=2+\sqrt{x-5}.
3=3
Whakarūnātia. Ko te uara x=6 kua ngata te whārite.
x=14 x=6
Rārangihia ngā rongoā katoa o \sqrt{2x-3}=\sqrt{x-5}+2.