Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x}=x+12-16
Me tango 16 mai i ngā taha e rua o te whārite.
\sqrt{2x}=x-4
Tangohia te 16 i te 12, ka -4.
\left(\sqrt{2x}\right)^{2}=\left(x-4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x=\left(x-4\right)^{2}
Tātaihia te \sqrt{2x} mā te pū o 2, kia riro ko 2x.
2x=x^{2}-8x+16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
2x-x^{2}=-8x+16
Tangohia te x^{2} mai i ngā taha e rua.
2x-x^{2}+8x=16
Me tāpiri te 8x ki ngā taha e rua.
10x-x^{2}=16
Pahekotia te 2x me 8x, ka 10x.
10x-x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
-x^{2}+10x-16=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=10 ab=-\left(-16\right)=16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,16 2,8 4,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
1+16=17 2+8=10 4+4=8
Tātaihia te tapeke mō ia takirua.
a=8 b=2
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(-x^{2}+8x\right)+\left(2x-16\right)
Tuhia anō te -x^{2}+10x-16 hei \left(-x^{2}+8x\right)+\left(2x-16\right).
-x\left(x-8\right)+2\left(x-8\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-8\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=2
Hei kimi otinga whārite, me whakaoti te x-8=0 me te -x+2=0.
\sqrt{2\times 8}+16=8+12
Whakakapia te 8 mō te x i te whārite \sqrt{2x}+16=x+12.
20=20
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
\sqrt{2\times 2}+16=2+12
Whakakapia te 2 mō te x i te whārite \sqrt{2x}+16=x+12.
18=14
Whakarūnātia. Ko te uara x=2 kāore e ngata ana ki te whārite.
x=8
Ko te whārite \sqrt{2x}=x-4 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}