Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{7}-\sqrt{27}+\sqrt{63}-\sqrt{12}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{7}-3\sqrt{3}+\sqrt{63}-\sqrt{12}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
2\sqrt{7}-3\sqrt{3}+3\sqrt{7}-\sqrt{12}
Tauwehea te 63=3^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 7} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{7}. Tuhia te pūtakerua o te 3^{2}.
5\sqrt{7}-3\sqrt{3}-\sqrt{12}
Pahekotia te 2\sqrt{7} me 3\sqrt{7}, ka 5\sqrt{7}.
5\sqrt{7}-3\sqrt{3}-2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
5\sqrt{7}-5\sqrt{3}
Pahekotia te -3\sqrt{3} me -2\sqrt{3}, ka -5\sqrt{3}.