Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\sqrt{6}-2\sqrt{54}-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Tauwehea te 216=6^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 6} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{6}. Tuhia te pūtakerua o te 6^{2}.
6\sqrt{6}-2\times 3\sqrt{6}-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Tauwehea te 54=3^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 6} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{6}. Tuhia te pūtakerua o te 3^{2}.
6\sqrt{6}-6\sqrt{6}-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Whakareatia te -2 ki te 3, ka -6.
-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Pahekotia te 6\sqrt{6} me -6\sqrt{6}, ka 0.
-4\sqrt{10}+4\sqrt{360}-2\sqrt{50}
Tauwehea te 160=4^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 10} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{10}. Tuhia te pūtakerua o te 4^{2}.
-4\sqrt{10}+4\times 6\sqrt{10}-2\sqrt{50}
Tauwehea te 360=6^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 10} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{10}. Tuhia te pūtakerua o te 6^{2}.
-4\sqrt{10}+24\sqrt{10}-2\sqrt{50}
Whakareatia te 4 ki te 6, ka 24.
20\sqrt{10}-2\sqrt{50}
Pahekotia te -4\sqrt{10} me 24\sqrt{10}, ka 20\sqrt{10}.
20\sqrt{10}-2\times 5\sqrt{2}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
20\sqrt{10}-10\sqrt{2}
Whakareatia te -2 ki te 5, ka -10.