Aromātai
10\sqrt{2}\left(2\sqrt{5}-1\right)\approx 49.10341758
Tohaina
Kua tāruatia ki te papatopenga
6\sqrt{6}-2\sqrt{54}-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Tauwehea te 216=6^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 6} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{6}. Tuhia te pūtakerua o te 6^{2}.
6\sqrt{6}-2\times 3\sqrt{6}-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Tauwehea te 54=3^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 6} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{6}. Tuhia te pūtakerua o te 3^{2}.
6\sqrt{6}-6\sqrt{6}-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Whakareatia te -2 ki te 3, ka -6.
-\sqrt{160}+4\sqrt{360}-2\sqrt{50}
Pahekotia te 6\sqrt{6} me -6\sqrt{6}, ka 0.
-4\sqrt{10}+4\sqrt{360}-2\sqrt{50}
Tauwehea te 160=4^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 10} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{10}. Tuhia te pūtakerua o te 4^{2}.
-4\sqrt{10}+4\times 6\sqrt{10}-2\sqrt{50}
Tauwehea te 360=6^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 10} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{10}. Tuhia te pūtakerua o te 6^{2}.
-4\sqrt{10}+24\sqrt{10}-2\sqrt{50}
Whakareatia te 4 ki te 6, ka 24.
20\sqrt{10}-2\sqrt{50}
Pahekotia te -4\sqrt{10} me 24\sqrt{10}, ka 20\sqrt{10}.
20\sqrt{10}-2\times 5\sqrt{2}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
20\sqrt{10}-10\sqrt{2}
Whakareatia te -2 ki te 5, ka -10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}