Aromātai
7
Tauwehe
7
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{5}\sqrt{4}\sqrt{5}-\frac{\sqrt{63}}{\sqrt{7}}
Tauwehea te 20=5\times 4. Tuhia anō te pūtake rua o te hua \sqrt{5\times 4} hei hua o ngā pūtake rua \sqrt{5}\sqrt{4}.
5\sqrt{4}-\frac{\sqrt{63}}{\sqrt{7}}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
5\times 2-\frac{\sqrt{63}}{\sqrt{7}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
10-\frac{\sqrt{63}}{\sqrt{7}}
Whakareatia te 5 ki te 2, ka 10.
10-\sqrt{9}
Tuhia anō te whakawehe o ngā pūtake rua \frac{\sqrt{63}}{\sqrt{7}} hei pūtake rua o te whakawehenga \sqrt{\frac{63}{7}} ka mahi i te whakawehenga.
10-3
Tātaitia te pūtakerua o 9 kia tae ki 3.
7
Tangohia te 3 i te 10, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}