Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2-x}\right)^{2}=\left(\frac{x-2}{2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2-x=\left(\frac{x-2}{2}\right)^{2}
Tātaihia te \sqrt{2-x} mā te pū o 2, kia riro ko 2-x.
2-x=\frac{\left(x-2\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{x-2}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
2-x=\frac{x^{2}-4x+4}{2^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
2-x=\frac{x^{2}-4x+4}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
2-x=\frac{1}{4}x^{2}-x+1
Whakawehea ia wā o x^{2}-4x+4 ki te 4, kia riro ko \frac{1}{4}x^{2}-x+1.
2-x-\frac{1}{4}x^{2}=-x+1
Tangohia te \frac{1}{4}x^{2} mai i ngā taha e rua.
2-x-\frac{1}{4}x^{2}+x=1
Me tāpiri te x ki ngā taha e rua.
2-\frac{1}{4}x^{2}=1
Pahekotia te -x me x, ka 0.
-\frac{1}{4}x^{2}=1-2
Tangohia te 2 mai i ngā taha e rua.
-\frac{1}{4}x^{2}=-1
Tangohia te 2 i te 1, ka -1.
x^{2}=-\left(-4\right)
Me whakarea ngā taha e rua ki te -4, te tau utu o -\frac{1}{4}.
x^{2}=4
Whakareatia te -1 ki te -4, ka 4.
x=2 x=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sqrt{2-2}=\frac{2-2}{2}
Whakakapia te 2 mō te x i te whārite \sqrt{2-x}=\frac{x-2}{2}.
0=0
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
\sqrt{2-\left(-2\right)}=\frac{-2-2}{2}
Whakakapia te -2 mō te x i te whārite \sqrt{2-x}=\frac{x-2}{2}.
2=-2
Whakarūnātia. Ko te uara x=-2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=2
Ko te whārite \sqrt{2-x}=\frac{x-2}{2} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}