Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{196\times 40\times 10^{-2}}
Whakareatia te 2 ki te 98, ka 196.
\sqrt{7840\times 10^{-2}}
Whakareatia te 196 ki te 40, ka 7840.
\sqrt{7840\times \frac{1}{100}}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\sqrt{\frac{392}{5}}
Whakareatia te 7840 ki te \frac{1}{100}, ka \frac{392}{5}.
\frac{\sqrt{392}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{392}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{392}}{\sqrt{5}}.
\frac{14\sqrt{2}}{\sqrt{5}}
Tauwehea te 392=14^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{14^{2}\times 2} hei hua o ngā pūtake rua \sqrt{14^{2}}\sqrt{2}. Tuhia te pūtakerua o te 14^{2}.
\frac{14\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{14\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{14\sqrt{2}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14\sqrt{10}}{5}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.