Aromātai
\frac{\sqrt{12558}}{28}+3136\approx 3140.00223152
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{112+785}{56}}+56^{2}
Whakareatia te 2 ki te 56, ka 112.
\sqrt{\frac{897}{56}}+56^{2}
Tāpirihia te 112 ki te 785, ka 897.
\frac{\sqrt{897}}{\sqrt{56}}+56^{2}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{897}{56}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{897}}{\sqrt{56}}.
\frac{\sqrt{897}}{2\sqrt{14}}+56^{2}
Tauwehea te 56=2^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 14} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{14}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{897}\sqrt{14}}{2\left(\sqrt{14}\right)^{2}}+56^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{897}}{2\sqrt{14}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{14}.
\frac{\sqrt{897}\sqrt{14}}{2\times 14}+56^{2}
Ko te pūrua o \sqrt{14} ko 14.
\frac{\sqrt{12558}}{2\times 14}+56^{2}
Hei whakarea \sqrt{897} me \sqrt{14}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{12558}}{28}+56^{2}
Whakareatia te 2 ki te 14, ka 28.
\frac{\sqrt{12558}}{28}+3136
Tātaihia te 56 mā te pū o 2, kia riro ko 3136.
\frac{\sqrt{12558}}{28}+\frac{3136\times 28}{28}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3136 ki te \frac{28}{28}.
\frac{\sqrt{12558}+3136\times 28}{28}
Tā te mea he rite te tauraro o \frac{\sqrt{12558}}{28} me \frac{3136\times 28}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{12558}+87808}{28}
Mahia ngā whakarea i roto o \sqrt{12558}+3136\times 28.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}