Aromātai
\frac{\sqrt{2}}{2}\approx 0.707106781
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2}-\frac{\sqrt{1}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
\sqrt{2}-\frac{1}{\sqrt{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\sqrt{2}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\sqrt{2}-\frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{2}}{2}-\frac{\sqrt{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{2} ki te \frac{2}{2}.
\frac{2\sqrt{2}-\sqrt{2}}{2}
Tā te mea he rite te tauraro o \frac{2\sqrt{2}}{2} me \frac{\sqrt{2}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\sqrt{2}}{2}
Mahia ngā tātaitai i roto o 2\sqrt{2}-\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}