Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2}\left(2\sqrt{3}+\sqrt{8}\right)
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\sqrt{2}\left(2\sqrt{3}+2\sqrt{2}\right)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}\sqrt{3}+2\left(\sqrt{2}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te 2\sqrt{3}+2\sqrt{2}.
2\sqrt{6}+2\left(\sqrt{2}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
2\sqrt{6}+2\times 2
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{6}+4
Whakareatia te 2 ki te 2, ka 4.