Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\sqrt{6}\sqrt{\frac{4}{3}}
Tuhia anō te whakawehe o ngā pūtake rua \frac{\sqrt{18}}{\sqrt{\frac{3}{4}}} hei pūtake rua o te whakawehenga \sqrt{\frac{18}{\frac{3}{4}}} ka mahi i te whakawehenga.
\sqrt{6}\times \frac{\sqrt{4}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{4}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{3}}.
\sqrt{6}\times \frac{2}{\sqrt{3}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\sqrt{6}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{6}\times \frac{2\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}\times 2\sqrt{3}}{3}
Tuhia te \sqrt{6}\times \frac{2\sqrt{3}}{3} hei hautanga kotahi.
\frac{\sqrt{3}\sqrt{2}\times 2\sqrt{3}}{3}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{3\times 2\sqrt{2}}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{6\sqrt{2}}{3}
Whakareatia te 3 ki te 2, ka 6.
2\sqrt{2}
Whakawehea te 6\sqrt{2} ki te 3, kia riro ko 2\sqrt{2}.