Aromātai
5\sqrt{595}\approx 121.963109177
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt{ 17(17-12) \times (17-12) \times (17-12) \times (17-10) }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{17\left(17-12\right)^{2}\left(17-12\right)\left(17-10\right)}
Whakareatia te 17-12 ki te 17-12, ka \left(17-12\right)^{2}.
\sqrt{17\left(17-12\right)^{3}\left(17-10\right)}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\sqrt{17\times 5^{3}\left(17-10\right)}
Tangohia te 12 i te 17, ka 5.
\sqrt{17\times 125\left(17-10\right)}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\sqrt{2125\left(17-10\right)}
Whakareatia te 17 ki te 125, ka 2125.
\sqrt{2125\times 7}
Tangohia te 10 i te 17, ka 7.
\sqrt{14875}
Whakareatia te 2125 ki te 7, ka 14875.
5\sqrt{595}
Tauwehea te 14875=5^{2}\times 595. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 595} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{595}. Tuhia te pūtakerua o te 5^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}