Whakaoti mō x
x=4
x=2
Graph
Pātaitai
Algebra
\sqrt{ 16x+17 } =x+5
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{16x+17}\right)^{2}=\left(x+5\right)^{2}
Pūruatia ngā taha e rua o te whārite.
16x+17=\left(x+5\right)^{2}
Tātaihia te \sqrt{16x+17} mā te pū o 2, kia riro ko 16x+17.
16x+17=x^{2}+10x+25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
16x+17-x^{2}=10x+25
Tangohia te x^{2} mai i ngā taha e rua.
16x+17-x^{2}-10x=25
Tangohia te 10x mai i ngā taha e rua.
6x+17-x^{2}=25
Pahekotia te 16x me -10x, ka 6x.
6x+17-x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
6x-8-x^{2}=0
Tangohia te 25 i te 17, ka -8.
-x^{2}+6x-8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=6 ab=-\left(-8\right)=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,8 2,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
1+8=9 2+4=6
Tātaihia te tapeke mō ia takirua.
a=4 b=2
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(-x^{2}+4x\right)+\left(2x-8\right)
Tuhia anō te -x^{2}+6x-8 hei \left(-x^{2}+4x\right)+\left(2x-8\right).
-x\left(x-4\right)+2\left(x-4\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-4\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=2
Hei kimi otinga whārite, me whakaoti te x-4=0 me te -x+2=0.
\sqrt{16\times 4+17}=4+5
Whakakapia te 4 mō te x i te whārite \sqrt{16x+17}=x+5.
9=9
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
\sqrt{16\times 2+17}=2+5
Whakakapia te 2 mō te x i te whārite \sqrt{16x+17}=x+5.
7=7
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
x=4 x=2
Rārangihia ngā rongoā katoa o \sqrt{16x+17}=x+5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}