Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{15-x}=-3+\sqrt{6x}
Me tango -\sqrt{6x} mai i ngā taha e rua o te whārite.
\left(\sqrt{15-x}\right)^{2}=\left(-3+\sqrt{6x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
15-x=\left(-3+\sqrt{6x}\right)^{2}
Tātaihia te \sqrt{15-x} mā te pū o 2, kia riro ko 15-x.
15-x=9-6\sqrt{6x}+\left(\sqrt{6x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-3+\sqrt{6x}\right)^{2}.
15-x=9-6\sqrt{6x}+6x
Tātaihia te \sqrt{6x} mā te pū o 2, kia riro ko 6x.
15-x-\left(9+6x\right)=-6\sqrt{6x}
Me tango 9+6x mai i ngā taha e rua o te whārite.
15-x-9-6x=-6\sqrt{6x}
Hei kimi i te tauaro o 9+6x, kimihia te tauaro o ia taurangi.
6-x-6x=-6\sqrt{6x}
Tangohia te 9 i te 15, ka 6.
6-7x=-6\sqrt{6x}
Pahekotia te -x me -6x, ka -7x.
\left(6-7x\right)^{2}=\left(-6\sqrt{6x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
36-84x+49x^{2}=\left(-6\sqrt{6x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-7x\right)^{2}.
36-84x+49x^{2}=\left(-6\right)^{2}\left(\sqrt{6x}\right)^{2}
Whakarohaina te \left(-6\sqrt{6x}\right)^{2}.
36-84x+49x^{2}=36\left(\sqrt{6x}\right)^{2}
Tātaihia te -6 mā te pū o 2, kia riro ko 36.
36-84x+49x^{2}=36\times 6x
Tātaihia te \sqrt{6x} mā te pū o 2, kia riro ko 6x.
36-84x+49x^{2}=216x
Whakareatia te 36 ki te 6, ka 216.
36-84x+49x^{2}-216x=0
Tangohia te 216x mai i ngā taha e rua.
36-300x+49x^{2}=0
Pahekotia te -84x me -216x, ka -300x.
49x^{2}-300x+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 49\times 36}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, -300 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-300\right)±\sqrt{90000-4\times 49\times 36}}{2\times 49}
Pūrua -300.
x=\frac{-\left(-300\right)±\sqrt{90000-196\times 36}}{2\times 49}
Whakareatia -4 ki te 49.
x=\frac{-\left(-300\right)±\sqrt{90000-7056}}{2\times 49}
Whakareatia -196 ki te 36.
x=\frac{-\left(-300\right)±\sqrt{82944}}{2\times 49}
Tāpiri 90000 ki te -7056.
x=\frac{-\left(-300\right)±288}{2\times 49}
Tuhia te pūtakerua o te 82944.
x=\frac{300±288}{2\times 49}
Ko te tauaro o -300 ko 300.
x=\frac{300±288}{98}
Whakareatia 2 ki te 49.
x=\frac{588}{98}
Nā, me whakaoti te whārite x=\frac{300±288}{98} ina he tāpiri te ±. Tāpiri 300 ki te 288.
x=6
Whakawehe 588 ki te 98.
x=\frac{12}{98}
Nā, me whakaoti te whārite x=\frac{300±288}{98} ina he tango te ±. Tango 288 mai i 300.
x=\frac{6}{49}
Whakahekea te hautanga \frac{12}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=6 x=\frac{6}{49}
Kua oti te whārite te whakatau.
\sqrt{15-6}-\sqrt{6\times 6}=-3
Whakakapia te 6 mō te x i te whārite \sqrt{15-x}-\sqrt{6x}=-3.
-3=-3
Whakarūnātia. Ko te uara x=6 kua ngata te whārite.
\sqrt{15-\frac{6}{49}}-\sqrt{6\times \frac{6}{49}}=-3
Whakakapia te \frac{6}{49} mō te x i te whārite \sqrt{15-x}-\sqrt{6x}=-3.
3=-3
Whakarūnātia. Ko te uara x=\frac{6}{49} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{15-6}-\sqrt{6\times 6}=-3
Whakakapia te 6 mō te x i te whārite \sqrt{15-x}-\sqrt{6x}=-3.
-3=-3
Whakarūnātia. Ko te uara x=6 kua ngata te whārite.
x=6
Ko te whārite \sqrt{15-x}=\sqrt{6x}-3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}