Whakaoti mō x
x=\frac{1}{4}=0.25
x=0
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\sqrt{ 15 { x }^{ 2 } } = \sqrt{ 4- { \left(2-x \right) }^{ 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{15x^{2}}\right)^{2}=\left(\sqrt{4-\left(2-x\right)^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
15x^{2}=\left(\sqrt{4-\left(2-x\right)^{2}}\right)^{2}
Tātaihia te \sqrt{15x^{2}} mā te pū o 2, kia riro ko 15x^{2}.
15x^{2}=\left(\sqrt{4-\left(4-4x+x^{2}\right)}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
15x^{2}=\left(\sqrt{4-4+4x-x^{2}}\right)^{2}
Hei kimi i te tauaro o 4-4x+x^{2}, kimihia te tauaro o ia taurangi.
15x^{2}=\left(\sqrt{4x-x^{2}}\right)^{2}
Tangohia te 4 i te 4, ka 0.
15x^{2}=4x-x^{2}
Tātaihia te \sqrt{4x-x^{2}} mā te pū o 2, kia riro ko 4x-x^{2}.
15x^{2}-4x=-x^{2}
Tangohia te 4x mai i ngā taha e rua.
15x^{2}-4x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
16x^{2}-4x=0
Pahekotia te 15x^{2} me x^{2}, ka 16x^{2}.
x\left(16x-4\right)=0
Tauwehea te x.
x=0 x=\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te x=0 me te 16x-4=0.
\sqrt{15\times 0^{2}}=\sqrt{4-\left(2-0\right)^{2}}
Whakakapia te 0 mō te x i te whārite \sqrt{15x^{2}}=\sqrt{4-\left(2-x\right)^{2}}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{15\times \left(\frac{1}{4}\right)^{2}}=\sqrt{4-\left(2-\frac{1}{4}\right)^{2}}
Whakakapia te \frac{1}{4} mō te x i te whārite \sqrt{15x^{2}}=\sqrt{4-\left(2-x\right)^{2}}.
\frac{1}{4}\times 15^{\frac{1}{2}}=\frac{1}{4}\times 15^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1}{4} kua ngata te whārite.
x=0 x=\frac{1}{4}
Rārangihia ngā rongoā katoa o \sqrt{15x^{2}}=\sqrt{4-\left(2-x\right)^{2}}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}